SECTION 4 -
DATA ARITHMETIC LOGIC UNIT

This section describes the operation of the data arithmetic logic unit {ALU) registers and
hardware. The data representation, rounding, and saturation arithmetic used within the
data ALU are also presented. This section concludes with a discussion of the programming
model.

4.1 OVERVIEW AND DATA ALU ARCHITECTURE

The DSP56000'DSP560C1 centra! processor is composed of three execution units that op-
erate in parallel. They are the data ALU, address generation unit {AGU), and the program
controller {see Figure 4-1). These three units are register oriented rather than bus oriented
and are designed to interface over the system buses with memory and memory-mapped

'O devices. The DSP568000/DSP56001 instruction set has been designed to allow flexible -

control of these parallel processing resources. Many instructions allow the programmer
to keep each unit busy, thus enhancing performance. It was possible to make the pro-
gramming model like that of conventional microprocessor units (MPUs), eliminating the

YAB . @

EXTERNAL .
poar | ADDRESS LY > anpRess | ADDRESS
PAB : e
gor | GENERATION »| BUS
-lon A y
HOST UHT et Y ¥ ¥ y SWITCH
Y _ X MEMORY | [Y MEMORY
i BOOTSTRAP] | PROGRAM RAM RAM
S pgﬁﬁﬂ'ila - ~ ROM RAM 256 % 24 256 x 24 TRE
I :
32x24 512224 w'A ROM SINE ROM CONTROLLER[™“™ [PORT A
<3 ,f HOST, 881, SCI. K 256 % 24 256 x 24
+ PARALLEL 110 ﬁ TT @
PORT ¢ Y08
on i DATA DATA
ggilofst}c? Ngjgl\;ﬁt”m T I T xo8 % {}:>> EXTERNAL
' AND BIT ! 7 <7 __PoB 4 11 D:\LTTEES o
MANIPULATION G m 7 o
UNIT Q—
A oA
Y
- —— o o=t o —— =
| PROGAAM | | PROGRAM [! PROGRAM | 3 " DATA ALU
| ADDRESS N3 DECODE (= INTERAUPT || i 2424+ 56 ¢ 56-BIT MAC |
I NTR . 3
CLocK (TUEAROR) CONTROUERy (SINTROLR) § E WO 86-B1T ACCUMULATORS
GENERATOR PROGRAM CONTROLLER K i
i T e
‘ ¥y ’ | vooe/ies — RS
EXTAL MODA/IROA
RESET —= 24 BITS
Figure 4-1. DSP56001 Block Diagram
MOTQROLA DSP56000/DSP56001 USER'S MANUAL 4-1

- Trust Your DSP Project - (8
Te The Toals Experts at . g
" White Mountain psp
3 Experienced DSP engineers
i#1° Knaw that the most important
j Jinvestment they ever make is in

i development tools. The right
' "tools. backed by top-notch

: fechnical support, give B
Your project a distinet -, 38

time-to-market
- & s advantage against
L today’s tough
" f competition. And your §
¢ bhest het for this erucial
investment js White
Mountfain DSP— the DSp
development tools experts,

. Tools Are All We Do :
< At White Mountain DSP, we @
53 focus on DSP development: §
~tools. That’s it. Qur intimata :
understanding of emulator and
i debugger technology s
“unequalled anywhere in the,
DSP indusiry. And when you:

.. buy your tools from us, that
expertise is at your service,
Jwith personal attention right
Cfrom the top. - - #E
Never Detiug A Debugger - -
Qur products are robust and
reliable. Our Mountain.30
“development svstens hag
shipped for over a Year
witlout a single customer
complaint or refirnl
Numecrous Fortune s00"
companies are among
those who havy LI
enjéied the afford.
cabibity and quick
Availability A
oF gur tools for
TMSE320C3y, 'Cdy o
and "C3x DSp 4
“development projects. =
Never Take Toois Fop Granite
Callan White Mountain DSP
lor your development tonls,
Our expertise and gup Teputy-
~tion are built like tough New,
- Enalund gr:mitc—rc!inblc_
and solid. Rock solid.

R e
d'ﬂr

e I
_.,td}? iy]

'

-

e

o

e
Yes
"

Y

’

3l OW Highway, Surte 433
. MNaoshug, Wew Hompshite B3060-52458
- Phone (403} BB3-2430 « Fox 1803) §82-2455

Circle 52
B0 OCTOEER 1994 COMPUTER DESIGN

Motorola 68356

use than standard
ICEs, we had an &

68302

bit niicrocontroller
ICE for a project

l 68K i: j BtimerS'J, that was just too
16-hit CPU |, " chip select [hard to use, Most
@ S @ : of our code is pret-

: . ty clean. The 12

pin header is just
great for hookups,
If we mn into a
major hardware
problem, we just
rent a logic analyz-
er. But that doesn't
happen often,
We're pretty care-
ful with our hoard

designg.”
But back-
ground mode

ernulation has its
limits. Many DSP
applications don't
lend themselves
to a strictly back-
ground-emula-
tion-mode debug-

ging style. For
one thing, some
.applications

require continu-

bl -

ous control, par-

speech-recognition systems for Win-
dows applications, “We desion with
Motorola 56001s, but use a Domain
Technology emulator that substitutes
a 56002 with OnCE emulation. This

- way we still use a 55001 but get 56002

emulation. It's g good system and
gives me some of the capabilities of an

: old style ICE. For problems in the real-

time code, I generally use the Motoro-
la simulator to look at the code first.”
Most engineers seem to he able to

i get their work done using background

P emulation,

For those hard-to-find
problems, many turn to logic analvz-

L ers as a last resort. And unlike most

embedded systoms engineers, D3P
developers use simulation to get

! major code sets, usuaily math pro-

cessing, to work.

*I really love TPs scan path emu-
lator; its €asy 10 uge and works,” says
Chris Keiraly, vice president of engi-

i neering at Wintress (San Diegn, CA),
; @ system design house with designs

that include golf and archery simula-
tors driven by C20s. “It's a lot easier to

Motoro/a’s 68356 is a multi-processor, super communications
chip. it combines a g3302 comrmunications processor with a
24-bit 56002 DSP. The CPus have different clocks and run sepa-
rately, fommunicating vial shared memory or serial line

J ticularly those
with negative
feedback paths.
Stopping the Dsp
can cause the sys-
tem to fail and
even damage equipment, _ :

For many DSP chips, especially the .
first- and second-generation chips,
You can get a full ICE for debugging.
These ICEs et You to set complex
hreakpoints, single-step, and trace
external bus activity in reajtime,
There are ICEs for TI C1X C2X and
C2X DSPs, and for Analoy Devices’
ADSP-21XX DSPs. TT and Analog
Devices furnish their own ICEs. Com-
panies such as E\-'Iacmchip {Planes, TO
and Signum Systems (Thousand
Qaks, CA) also finnish ICEs for Ti's
€25, C30 and €50 DSPs,

ICEs for DSP have some limita-
tions, however, They monitor the
external pins of a DSP and although
some DEPs provide some access to
their internal operation, the ICEs can-
not monitor many internal opera-
tions. For DSPs, this can be problem-
atical because 5o much processing is
internal with Jittle visible on the cut-
side. Most DSPs, for example, have

continued cn fage 86

5.3.1.2 POSTINCREMENT BY 1. The address of the operand is in the address register, Rn
(see Table 5-1 and Figure 5-5). After the operand address is used, it is incremented by 1
and stored in the same address register. This mode can be used for making XY: memory
references and for modifying the contents of Rn without an associated data move.

5.3.1.3 POSTDECREMENT BY 1. The address of the operand is in the address register,
Rn (see Table 5-1 and Figure 5-6). After the operand address is used, it is decremented by
1 and stored in the same address register. This mode can be used for making XY: memory
references and for meodifying the contents of Rn without an associated data move.

EXAMPLE: MOVE BO.Y:(R1)+

BEFORE EXECUTION AFTER EXECUTION

B2 i 81 Be B2 Bi BO
55 48 & ¥ 2 0 55 48 47 4 23 0

[AFrl[ssaes21]Fencaal [arlecsaeszi|renpcsa
T0n 023 0 Toooa

XX K XXX KKK XXX

XKXXXKXX SFEDCEA

Mi

Assarmbler Syntax; (Rn}+

Memaory Spaces: P, X;, ¥, XY, L:

Additional Instruction Execution Time {Clocks): 0
Additional Effective Address Words: 0

Figure 5-5. Address Register Indirect — Postincrement

DEP56000/DSP56001 USER'S MANUAL MOTOROLA

Wl

1ory

ter,
| by
ary

EXAMPLE: MOVE YD,Y:(R3) -

BEFORE EXECUTION AFTER EXECUTION
1 Y0 VI ¥o
4 % B 0 o % 2 0
1231 23[4a5645¢8| Py 231 23[a581854
B 0 2 0 3 0 3 0
¥ MEMORY ¥ MEMORY
7 0 P 0
F_--\-_-——'
sms| x XX xxx je= s735| 4 56 456
Gt XX XX XX | XXX XXX |
SR e
15 0
15 0
N3l oo Nl oo

= = o
=] = o

M3

Assembler Syntax: {Rn}—

Mamory Speces: P, X, Y, XY, L

Additional Instruction Execution Time {Clocks). O
Additional Effective Addrass Words: D

Figure 5-6. Address Register Indirect - Postdecrement

£.3.1.4 POSTINCREMENT BY OFFSET Nn. The address of the operand is in the address
register, Rn {see Table 5-1 and Figure 5-7). After the operand address is used, it is incre-
mented by the contents of the Nn register and stored in the same address register. The
contents of the Nn register are unchanged. This mode can be used for making XY: memory
refarences and for modifying the contents of Rn without an associated data move.

5.3.1.5 POSTDECREMENT BY OFFSET Nn. The address of the operand is in the address
register, Rn (see Table 6-1 and Figure 5-8). After the operand address is used, it is decre-
mented by the contents of the Nn register and stored in the same address register. The

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 5-9

Eo

EXAMPLE: MOVE X1,X:(R2)+ N2

SEFORE EXECUTION AFTER EXECUTION

X1 X0 X1 X0
47 4 3 0 47 2 3 1]

P A58 4C6[0D00001 | A S B 4C 5000001 |
I 123 0 P 0 0

X MEMURY
FE|

LXXRXEX $ABBACSH

-'-"'-'--.‘_____-_'

15 0

15 0

o o —
15 1]
15 0

M2 $FFFF

Assembler Syntax: (Rn}+Nn

Mamory Spaces: P:, X:, Y1, XY, L:

Additional Instruction Execution Time {Clocks): 0
Additional Effectlva Address Wards: 0

Figure 5-7. Address Register Indirect — Postincrement by Offset Nn

contents of the Nn register are unchanged. This moede cannot be used for making ' XY:

memory references, but it can be used to-modify the contents of Rn without an associated
data move.

5.3.1.6 INDEXED BY OFFSET Nn. The address of the operand is the sum of the contents
of the address register, Rn, and the contents of the address offset register, Nn {see Table
5-1 and Figure 5-9). The contents of the Rn and Nn registers are unchanged. This addressing

mode, which:requires an extra instruction eycle, cannat be used for making XY: memory
references, . :

5-10 DSP56000/DSP56001 USER'S MANUAL MOTQROLA

<l 3 M W

EXAMPLE: MOVE X:[R4] - Nd,AD

BEFORE EXECUTION AFTER EXECUTION
» A1 A 2 M A0
5 48 4 u B o 55 48 4 u 0
FOF\?410'5A3FA530| ‘_uF]'?fmusn-l-'susnsu_[
7 03 PR 0 7 0B 1 B 0
X MEMORY X MEMORY

n 0 3 0

snos| s505050 [sTH6] $505D60

$7703]. X X X XX X $113 XA E AR |

15 0 : 15 0
15 0 15 0

Assemblar Syntax: {Rn)—Nn

Mamory Spaces: P:, X, Y, L

Additional Instruction Execution Tima Clocks]: O
Additional Effective Address Words: 0

Figure 5-8. Address Ragistef Indirect — Postdecrement by Offset Nn

5.3.1.7 PREDECREMENT BY 1. The address of the operand is the contents of the address
register, Rn, dacremented by 1 before the operand address is used (see Table 5-1 and

Figure 5-10} The conterts of Rn are decremented and stored in the same address register.
tra instruction cycle. This mode cannot be used for

This addressing mode requires an ex
making XY: memory references, nor can it ba used for modifying the contents of Rn without

an associated data move.
5.3.2 Address Modifier Types

The DSPEG000/DSPE6001 address ALU supports linear, modulo, and reverse-carry arith-
metic types for all address register indirect modes. These arithmetic types easily allow the

MOTOROLA DSP56000/DSP5E001 USER'S MANUAL 5-11

EXAMPLE: MOVE Y1, A6+ NE)

BEFDRE EXECUTION AFTER EXECUTION
Y1) ¥ ¥ ¥0
47 2% B 0 47 un ¢
-Isz1009|3n4cz2 § 2t 009|BA&C 22

2 0B 0 px) T2 9

X MEMORY 5 X MEMORY

$6004 XXX XXX ———» 504 $621009

$000| N X X X XX $6000| X X X X X ¥

|
|

o
L =]
5
D

14 1]
15 0
15 1]

ME| SFFFF

Assemblar Syntax: {Rn+ Nn]

Memory Spaces: P, X:, Yi, L:

Additionzl Instruction Execution Time [Clocks): 2
Additional Effective Address Words: §

Figure 5-9. Address Register Indirect — Indexed by Offset Nn

creation of data structures in memory for FIFOs {queues), delay lines, circular buffers,
stacks, and bit-reversed FFT buffers. Data is manipulated by updating address registers
{pointers} rather than moving farge blocks of data. The contents of the address modifier
register, Mn, define the type of arithmetic to be performed for addressing mode calcula-
tions; for medulo arithmetic, the contents of Mn also specify the madulus. All address
register indirect modes can be used with any address maodifier. Each address register, Rn,
has its own modifier register, Mn, associated with it.

5.3.2.1 LINEAR MODIFIER {Mn = $FFFF). Address modification is performed using normal
16-bit linear {modulo 65,536) arithmetic (see Table £-2). A 16-bit offset, Nn, and +1 or —1

5-12 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

EXAMPLE: MOVE X: ~ (R5),B1

' BEFQORE EXECUTION AFTER EXECUTION
B2 B1 80 82 B1 B0
5 48 47 2 B 0 55 48 47 nn 0
[se[ec62p0alasseco| |3sB|l123456|A554aca
7 0% 0% « . 1 om 0z o
X MEMORY X MEMORY
0 7 0
u—'_i-l-.\-‘-‘___—" m

830071 $ABCNREF

$3007| $ABGCDEF

S3006| $123456 $3006 $123456 [
rr———
15] 15]
15 0 15 0

Assambler Syntax: - {Rn)

Memory Spaces: P, X Y, L

Additional Instruction Execution Time {Clocks): 2
Additional Effective Address Words: 0

Figure 5-10. Address Register Indirect — Predecrement

can be used in the address calculations. The range of values can be considered as signed

‘ars, 3 {Nn from —32,768 to +32,767) or unsigned (Nn from 0 to +65,535) since there is no

ters arithmetic difference between these two data representations. Addresses are normally

ifier 3 considered unsigned, and data is normally considered signed.

ula- -y

ress

RN, 5.3.2.2 MODULO MODIFIER (Mn=MODULUS-1}. The address modification is per-
formed modulo M, where M ranges from 2 to + 32,768 (see Table 5-3). Modula M arithmetic
causes the address register value to remain within an address range of size M, defined by
a lower and upper address boundary {see Figure 5-11}. The value m=M—1 is stored in

mal the modifier register, Mn. The lower boundary (base address) value must have zeros in

-1 E the k LSBs, where 2k=M, and therefore must be a multiple of 2K The upper boundary is

OLA % MOTOROLA DSP56000/DSP56001 USER'S MANUAL 5-13

Table 5-2. Linear Address Modifiers

Modifler Mn Addressing Mode
Value Arithmetic
jul Reverse Carry (Bit Reverse)
1 Modulo 2

2 Modulo 3

Modulo (Mn + 1}

32766 Modulo 32767

32767 Modulo 32768
i Reserved .
66535 Linesr (Modulo 65536)

the lower boundary plus the module size minus one {base address plus M —1). Since M=2K,
once M is chosen, a sequential series of memory blocks (each of length 2k} is created
where these circular buffers can be located. If M<2K, there will be a space between se-
quential circular buffers of {2K)— M. For example, to create a circufar buffer of 21 stages,
M is 21, and the lower address boundary must have its five LSBs equal to zero (2k=21,
thus k=5). The Mn register is loaded with the value 20. The lower boundary may be chosen
as 0, 32, 64, 96, 128, 160, etc. The upper boundary of the buffer is then the lower boundary
pius 21, There will be an unused space of 11 memory lacations between the upper address
and next usabie lowsr address. The address pointer is not required to start at the lower
address boundary or to end on the upper address boundary; it can initially point anywhere
within the defined modulo address range. Neither the lower nor the upper boundary of
the modulo region is stored; anly the size of the modulo region is stored in Mn. The
boundaries are determined by the contents of Rn. Assuming the (Rn) + indirect addressing

mode, if the address register pointer increments past the upper boundary of the buffer -

UPPER BOUNDARY

ADDRESS
POINTER

CIRCULAR

BUFFER M =MODULUS

LOWER BOUNDARY

Figure 5-11, Circular Buffer

DSP56000/D5P56001 USER'S MANUAL MOTORQLA

L

FRR28cnREReRe™ 329

2k,
ed

se-
es,
21,

en

iy
158
rar
ire

of
he
ng
fer

k.. % an offset, Nn, is used in the address calculations, the 16-bit absolute value, |Nnf, must

by the required amount. This type address modification is useful for creating circular buters

fbase address plus M -1), it will wrap around through the base address {iower boundary).
Ahternatively, assuming the {Rn)— indirect addressing mode, if the address decrements
past the lower boundary {base address), it will wrap around through the base address plus
M -1 {upper boundary).

be less than or equal to M for proper modulo addressing. If Nn>>M, the result is data
dependent and unpredictable, except for the special case where Nn=P x 2K, a multiple of
the block size where P is a positive integer. For this special case; when using the (Rn}+ Nn
addressing mode, the pointer, Rn, will jump linearly to the same relative address in a new
buffer, which is P blocks forward in memary {see Figure 5-12). Similarly, for (Rn} —Nn, the
pointer will jump P blocks backward in memory. This tachniqua is useful in sequentiaily
processing multiple tables or N-dimensianal arrays. The range of values for Nn is - 32,768
to +32,767. The modulo arithmetic unit will automatically wrap around the address pointer

for FIFOs (queues}, delay lines, and sample buffers up to 32,768 words long as well as for
decimation, interpoiation, and waveform generation. The special case of (Rn)=Nn mod M
with Nn=P x 2K is useful for performing the same algorithm on multiple biocks of data in
memory — e.g., parallel infinite impulse response {{1R) filtering.

% g

H }M)
{Anp=Nn MOD M

7 e WHERE Nn=2k i, P = 1)

hYd

*<

Figure 5-12. Linear Addressing with a Moduic Modifier

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 5-16

An example of address register indirect modulo addressing is shown in Figure B-13. Starting
at location 64, a circular buffer of 21 stages is created. The addresses generated are offset
by 15 locations. The lower boundary = L x (2K} where 2k=21; therefore, k=5 and the lower
address boundary must be a multiple of 32. The lower boundary may be chosen as 0, 32,
64, 96, 128, 160, etc. For this example, L is arbitrarily chosen to be 2, making the lower
boundary 64. The upper boundary of the buffer is then 84 (the lower boundary plus 20
(M —1}}). The Mn register is loaded with the value 20 (M — 1}. The offset register is arbitrarily
chosen to be 15 (Nn=M}. The address pointer is not reguired to start at the jower address
boundary and can begin anywhere within the defined modulo address range — i.e., within
the lower boundary +(2K) address region. The address pointer, Rn, is arbitrarily chosen
to be 75 in this example. When R2 is postincremented by the offset by the MOVE instruction,
instead .of pointing to 90 (as it would in the linear mode) it wraps around to 69. If tha
address register pointer increments past the upper boundary of the buffer (base address
plus M- 1), it will wrap around to the base address. If the address decrements past the
lower boundary (base address), it will wrap arcund to the base address plus M —1.

If Bn is cutside the valid medulo buffer range-and an operation occurs that causes Rn to
be updated, the contents of Rn will be updated according to modulo arithmetic rulas. For
example, a MOVE BC,X:{R0)+ NO instruction {where R0=86, M0=5, and NO=0) would ap-
parently leave RO unchanged since NO =0. However, since R0 is above the upper boundary,
the AGU calculates RO+NO0O—-MO -1 for the new contents of RO and sets R0=0.

EXAMPLE: MOVE X0.X:AR2 + N
LET:

M2 [w. .. owewo| mopuLUs=21
R2 POINTER = 75

15903
P 1A EI I LSS

T4 O

Figure 5-13. Modulo Modifier Example

DSP56000/D5P56001 USER'S MANUAL MOTOROLA

i

Table 5-6. Address-Modifier-Type Encoding Summary

Modifler Mn Rn Updats Arithmetic
0 Reverse-Carry (Bit-Reversel Addressing
1 Modulo 2
2 Modulo 3

Modulo {Mn + 1} Addressing

32747 Modulo 32768

- Reserved
65535 linear Addressing (Modulo 65536)

Bit-reverse addressing is useful for 2k-point FFT addressing. Modulo addressing is useful
for creating circular buffers for FIFOs {gueues), delay lines, and sample buffers-up to 32,768
words long. The linear addressing is useful for general-purpose addressing. There is a
reserved set of modifier values (from 32,768 to 65,534} that should not be used. -

Figure 5-15 gives examples of the three addressing modifiers using 8-bit registers far
simplification (all AGU registers in the DSP56000/DSP56001 are 16 bit}. The addressing
mode used in the example, postincrement by offset Nn, adds the contents of the offset
register to the contents of the address register after the address register is accessed. The
results of the three examples are as follows:

The linear address modifier addresses every fifth iocation since the offset register con-
tains $b.

Using the bit-reverse address modifier causes the postincrement by offset Nn addressing
mode to use the address register, bit reverse the four LSBs, increment by .1, and bit
reverse the four LSBs again.

The modulo address modifier has a lower boundary at a predetermined location, and
the modulo nurmber plus the lower boundary establishes the upper boundary. This
boundary creates a circular buffer so that, if the address register is pointing within the
boundaries, addressing past a boundary causes a circular wraparound to the other
poundary.

DSP56000/DSP56001 USER'S MANLUAL ‘MOTOROLA

'OROLA

Table B-2. 27-MHz Bencheark Results for the DSP56001R27

Sanaphs farte Mamaory Number of
Benchmark Program Ha) o Size Clack
Exwcution THma [Words) Cycles
20-Tap FIR Filter SO0.0 kHz 50 b4
&d4-Tap FIR Filter 190.% kHz 138 142
B7-Tap FIR Filter 182.4 kHz 134 148
8-Pole Cascaded Cananic 540.0 kHz 50
Biquad IR Fllter {4
8-Pole Cascadad Canonic 465.5 kHz 58
Biguad iIR Filtar {5x}
8-Pola Cascaded Transpose 385.7 kHz 48 70
Biquad IIR Filter
Dot Product 444 .4 ng 10 12
Matrix Multiply 2 x 2 1.556 us 33 a2z
times 2x2 2
Matrix Multiply 3x3 1.258 pus 29 M
timag 3x 1

M-ta-M FFT
84 Point

58.33 us

489

2655

M-to-M FFT
256 Paint

489.8 us

1641

13256

M-to-M FFT
1024 Point

2.453 ms

8793

86240

P-to-M FFT

9256 us 04 2499
64 Point
F-to-M FFT 347.9 ps 2048 9394 -
256 Point ‘
P-to-M FFT 1,489 mg 7424 40144
1024 Point
MOTOROLA, DSP58000/DSPEE001 USER'S MANUAL

page 132,85,0,6

opt rc
P EARERREREERREERAEFFLRRRFFREERRFRRFRRREL AR
L

:Motorola Austin DSP Cperation June 30, 1988

; EXEREFRAAFXEEFEERFERRR AR FFEEREFFFFEREE T

; DSP56000/1

;20-tap FIR filter

;File name: 1-56.asm

: AEEARREEREERR L EL TR RS F R R EEEERRRFEFFRRRREREFEERERFFFRFEFRRERFER AT ERREFERTE R RSN S
Maximum sample rate: 379.6 kHz at 20.5 MHz/500.0 kHz at 27.0 MHz

Memory Size: Prog: 4+6 words; Data: 2x20 words

Number of clock cycles: 54 (27 instruction cycles)

Clock Frequency: 20.5 MHz/27.0 MHz

~ Instruction cycle time: 97.6 ns/74.1 ns

o RN e N B A R IR R O E IO 00 A IR0 TR R O R
This FIR filter reads the input sample

from the memory focation Y:input

and writes the filtared output sample

to the memory location Y:output

The samples are stored in the X memory

i The coefficients are stored in the Y memory :
B *{i**{!ﬂ**{i*iiiﬁ*iI!**-Ill***ii‘i****lIIl******ilIli***ii**&*i!**i***‘i*‘*****illiiii*

X MEMORY ¥ MEMORY
RO
: = Xn| TR clo}
Xin—1} ' o1}
il — g -
ot k+ 1) Xn+1} Lo ik -1}

Cio}

xnl yin}
B RO

-1
[’I] yin) EX clphin—p}

p=0

r
I
‘
!
'l
’
Il
’
'l
:
'l
il
fl
Il
]
Fl
]
r
r
r
’
’
il
il
il
’
il
r
r
i
’
’
'l
]
’
i
’
il

FIR
Figure B-1. 20-Tap FIR Filter Example (Sheet 1 of 2)

Il
il
'
'
r
’
il

DSP58000/DSP56001 USER'S MANUAL MOTOROLA

start
wddr
cddr
input
output

r

t
H L LT E

R R
:

i

MOTOROI

30LA

HERRRRREAEAR A F RN AR EEER IR NN AR REERE R RN FFER R RN FRRLL RS ERRR IR REH SRR EERN

e e mE mae maome we

initialization
LA A FR ISR LIRSS EEE R R SRS E

equ 20

start equ $40

wddr equ %0

cddr . equ $0

input equ $ifed

output equ $ffe
org p:start
mave #wddr,rQ ;10 # samples
move #caddr,rd :t1 ¢ cosfficients
move #n-1,mf§ ;set module arithmetic .
move md,mé :for the 2 circular buffers

opt cC
; filter loop :8+(n—1) cycles _
;iii{*'"i****l****li*ll*i*i*l*"****Il******il}***ll****lE!****i}**l*i**li***}*****
movep y:input,x; {r0) ;input sample in memory
clr a x:{r0)+ ,x0 y: {rd) +,y0

rep #n-1
" mac x0,y0,a x:Ar0l+,x0 - y: (rd)+ y0
macr x0,x0,a {rG} -

movep ay.output ;output filtered sample
P EEREAANFAER RSN EERRN A FEREFEER R RERRREELA R LN RA R LR AR FRE R R ER N RN R R NN
i .

end

Figure B-1. 20-Tap FIR Filter Example {Sheet 2 of 2)

“MOTOROLA DSP58000/DSP56001 USER'S: MANUAL B-5

; ;Late:
:This program criginally available on the Motorola DSP bulletin board. A ;

;It is provided under a DISCLAIMER OF WARRANTY available from |

;Motarola DSP Operation, 65601 William Cannon Drive, Austin, Tx., 78735, 3

;Radix-2, In-Place, Decimation-In-Time FET {smallest code size).

;Last Update 30 Sep 86 Version 1.1

fftr2a rmacro points,data,coaf
fitr2zs idant 11.

:Radix-2 Decimation-In-Time In-Place FFT Routine

: ;Perfor
H Complex input and output data '

: Real data in X rmiemory

> imaginary data in Y memory

; Normalfy ordered input data

H Bit reversed output data

; Coefficient lookup table

! —Cosine values in X memory

; —Sine vaues in Y memory

;Macro Call — fftr2a points,data,coef

; points numbar of points {2-32768, power of 2}

H data start of data buffer

; coef : start of sine/cosing table N

;Alters Data ALU Registe {.

; x1 x0 ooyl v0

; a2 al at a

; b2 b1 b0 b

;Altars Addrass Regiéters

H e nQ "mQ

v r1 nt m

; n2

: —-end_b

: r4 n4 md ty
: s ns m5)

: r6 né me —end_g rp
;Alters Program Control Registars o

H pc st -+

stes 6 locations on System Stack ~8nd_pass

il

Figure B-2, Radix 2, In-Place, Decimation-In-Time FFT (Sheet 1 of 2)

DSP56000/DSP56001 USER'S MANUAL “MOTOROLA

;Latest Ravision — September 30, 1986

’

move #points/2,nk
move #1,n2
g move #points/d,nG
f. move #-1m0
‘= move moe,m1
move md,md
mova mo0,m5
move #0,m6

;Perform all FFT passes with triple nested DO loop

l

do #@evi {@loglpointsi@log(2) +0.5),—end_pass
move #data,r0 sinitialize A input pointer
move ro.ré ;initialize A output pointer -
lua {r0)+ n0,r ;initialize B input pointer:
move #coef,ré ;initialize C input pointer
lua {r1})—.r5 sinitialize B output pointer
move ng,n1 ;initialize pointer offsets
move n0,n4
move n0,n5
do nZ.—end-grp :
move Sx:(r1),X1 y:(r6),y0 :lookup ~sine and
; —cosine vaiues
move x:(rB),a v:{r0Lb ;preload data -
move x:(r6) + n6,x0 ;update C pointer
do nQ—and_bfy
mac _x1,y0,b yirlh+ v ;Radx 2 DIT
:butterfly kernal
macr -x0,¥1,b a,x:{rb} + y:{r0},a
subl b,a %x:{rd),b b,y:ird)
mac —x1,x0,b xird)+.a - ay:{rb)
macr -y1.y¥0,b x:{r1),x1
subl b,a bx:{rd} + y:{r0},b
—end-bfy
move a,x:{rbj +nb yiri}+niy ;update A and B pointers
move x:{r0}+ n0,x* y:(rd)+ nd,y1 B
—and..grp

move n0,b1 ;divide butterflies per group by two
isr b n2,aj ;multiply groups per pass by two

. isi a b1,n0

9 maove al,n2

' -end._.pass
endm

Figure B-2. Radix 2, In-Place, Dacimation-in-Time FFT (Sheet 2 of 2}
‘OROLA MOTOROLA DSP58000/DSP56001 USER'S MANUAL B-7

;initialize butterflies per group

;initialize groups per pass b s
;initialize C pointer offset

;initialize A and B address modifiers

;for linear addressing

;initialize C address modifier for
;reverse carry (bit-reversed) addressing

e

page 132,66,0,6

opt rc
B EFERARREERRFFRBEER SRR TR R G EER TSN
r 7

;Motorola Austin DSP Qperation June 30, 1988

i&**il***1***1***ii‘iii*****iii*ﬂl**lt***!

DSPSGOOOH
;8-pole 4-multiply cascaded canonic IR filter

;File name: 4-56.asm -
l***ii&**il&*ii**ll*****i|***i*llit****il**ilill!l***iltt****i*l****ﬁ*ii{!ll**}lt**

Maximum sample rate: 410.0 kHz.at 20.6 MH2/540.0 kHz at 27.0 MHz
Memory Size: Prog: 6+ 10 words; Data: 4(2+4) words

Number of clock cycles: 50 (25 instruction cycles)

Clock Frequency: 20.5 MH2/27.0 MHz

Cycle time: 97.5 ns/74.1 ns

-I**ii*l**}**it**it****ilr&**iiﬁ**l***iill********iliI***ii!i***ii**i!***i****illl"

This IIR filter reads the input sample

5 from the memory logation Y:input
; and writes the filtered output sample
; to the memory location Y:output .
; ; i
; The samples are stored in the X memory JaEs
: The coefficients are stored in the Y memory ﬁtsec
) . start
; data
; The equations of the filter_ara;_ coef
: win)= x{n)-a G'F\Lv_m_ Z*w[n input
; yin)= win) + 6il*win - +b|2'w(n output
: igain
: win} B
£ x{n} -1 — s3> {+])w yin)
' 's I 1\
" W win-1}
', T 8il £ T 2 bit o
: 1 win-2| : _-:H--u"
! . ai2 L3 big 2
' _ 2 and_celi
Figure B-3. B-Pole 4-Multiply Cascaded Canonic IIR Filter {Sheet 1 of 2)
a IR TEEY
MOTORO

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Z _ All coefficients are divided by 2:

i wini2=x{n}2 - aii/2*win —~ 1} — ai2/Z*win - 2)
i yink2=wln}2 + bil;2*win ~1) + biZ/Z2*win - 2)
; X Memory Organization ¥ Memory Drganization
; b1N/2 Coef. +4*nsec~1
; b2N/2
' atN/2
- : 22N/2
s wiN{n—1) Data+2*nsec-1 . z
: - | wiN{n—2} — g
H ey b11/2 |
L3 SO 3 * . ’ b21!2'*
; oo i wlln-1} ¢ all2 |
Sve H RO} wiin-2} Data R4 b | a21/2 Coef.
* ;l‘***il***l’**iIE*iiI}**lll!******iilliiii!ii***il}l***lii***li***l**Il**ill**ilifﬁ
: initislization
;i*****ii*#iiI!**l***iii****il ;
-~ nsec equ 4 e =lv-
start BOU $40 -
data equ 0 o ﬂ?’ o
coef egu] W e
input . equ $ffel -
output equ $ffe1
igain equ 9.5
ori #$08,mr ;set scaling mode ;
: : move #data,r0 ;point to filter states - \01
move #coof 14 ;point to filter coefficiants Lﬁﬂ
move #2*nsec—1,m0 (%’ “EL oy
move #4*nsec—1,m4 ' . '_s‘/o“ g
move #igain,y1 t wyl=initial gain ey lo{(/lq
- |
opt oc \}}0 K .

filter.loop: 4*nsec+9
. ******1}*****!i**l****l!*ﬁ**iIﬁﬁ**ii}l*il!*l*i{&***II***}}***Q!*

“L
movep y:input,y0 ¢ ;pet sample
mpy v0,yla x{r0h+,x0 yi{rd}+,y8 ;x0=1st section win - 2),y0=2a12/2
do . #nsec,and—cell . ;do each section
mac —xBy0a e{r-x1 y:irdl+y0 x1=win-1)yD=2al1/2
mact -xty0a xlxc(r0)+ yi{rd+y0 ;push win—1) to win~2),y0= bi2/2
mac x0,y0,a ax:ir0)+ y:{rd)+.y0 ;push win} to win—1),y0=hi1/2
. mac x1,v0,a xiuri+ . x0 y:{rd}+,y0 next iter:x0=win—2],yo=ai2/2
end._cell
rnd a ;round result
movep a,y:output : ;output sample

Al IRt IR S SRR RAALSSEE AT IR RS LT T TN Y

end
Figure B-3. 8-Pole 4-Muitiply Cascaded Canonic lIR Filter (Sheet 2 of 2}

— MOTOROLA DSP56000/DSP56001 USER'S MANUAL B9

page 132,60,1,1
;newlms2n.asm .
; New Impiementation of the dalayed LMS on the DSP56000 Revision C

;Memory map:

H Initial X H :

;ox(m) xtn—1) x(n-2) x{in—-3] xin-4) hx ht h1 h2 h3
N]]

;o0 5] ré

:hx is an unused value to make the calculations faster.

il

opt cc

ntaps equ 4
input equ $FFCO .
output equ $FFC1.
org x:$0
state ds 5
org y:$0
coef . ds 5
org p:$40 ;
move ' #state,rd ;start of X
move #2,n0
move #ntaps,m0 ;mod 5
mova #coef+1,r4 ;coefficients
© move “#ntaps,md :mod 5§
move #coef, 15 ;coefficients
- move md,ms ;mod b
~smploop 5 Prog lcye
movep y:input,a ;get input sample word
move 5 ax:rQ) - ;save input sample 1 1

;error signal is in y1
;FIR sum in a=a+ hik} oid*x{n—k)
;hikinew in b=h{k}old +error*x{n—k—1}

clr a x:{r0) +,x0 X0 =x({n} 1 1

move x:(r0) + x1 y:rd)+ y0 x1=xin~1},y0=h{0) 1 4

do #tapsi2,—Ims ' : 2 3

mac x0,y0,8 yOb b,y:(rBl+ ;a=h{0)*x{n),b=h(0) 1 1

macr x1ylb w(r0}+ x0 yirdl+ 0 ;b=h{0)+e*x{n—1)=h{0lnew 1 1
:x0=x{n--2) yO=h(1}

mac x1,yD.a v0,b by:(r5)+ ;a=a+h(1)*x{n—1} b=h{1) 1 1

macr x0,¥1,b)0+ x1 y:rdl+y0 b=h{1+e*x{n-2] 1 1
i \ ;x1=x{n-3) yO=H(2}
-lms

move - b.y:{r8}+ ;save last newc{] 1 1
move - {rQ)—nl - :pointer update 1 1

;(Get din}, subtract fir output (reg a), multiply by “u”, put
;the result in ¥1. This section is application dependent.)

movep a,y:output ;output fir if desired
jmp -smploop
end ;

Figure B-4. LMS FIR Adaptive Filter

B-10 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

User s
and th

Design

Prototy,

Design
Verificati

MOTCROLA

