
10/12/11 1

Pipeline Architecture since 1985

  Last time, we completed the 5-stage pipeline MIPS.
—  Processors like this were first shipped around 1985
—  Still a fundamentally solid design

  Nevertheless, there have been advances in the past 25 years.
—  Deeper Pipelines
—  Dynamic Branch Prediction
—  Branch Target Buffers (removing the taken branch penalty)
—  Multiple Issue / Superscalar
—  Out-of-order Scheduling

  I will briefly overview these ideas
—  For more complete coverage, see CS433

Informal Early Feedback, Part I

  Top likes: (in order of frequency)
—  Presentation style
—  Handouts & in-class questions
—  Piazza
—  Everything
—  Discussion sections
—  Slides
—  SPIMbot
—  Appropriate MPs

10/12/11 2

Informal Early Feedback, Part II

  Top wants: (in order of frequency)
—  Video record lecture
—  Upload annotated lecture slides / MP solutions faster
—  Release slides before lecture
—  More (online) practice problems
—  More office hours
—  More SPIMbot testcases
—  Motivate the hardware material
—  List corresponding readings

10/12/11 3

Informal Early Feedback, Part III

  Top gripes: (in order of frequency)
—  Xspim is janky (use QtSpim)
—  EWS machines suck, let us run on our own computers
—  Drop handin, use SVN
—  Errors in MPs

10/12/11 4

10/12/11 5

  Make things faster by making any component smaller!!

CPU timeX,P = Instructions executedP * CPIX,P * Clock cycle timeX

  We proposed pipelining to reduce clock cycle time.
—  If some is good, more is better right?

Recall our equation for execution time

Hardware can affect these

“Superpipeling”

10/12/11 6

MIPS R4000

More Superpipelining

10/12/11 7

Historical data from Intel’s processors

10/12/11 8

Microprocessor Year Clock Rate Pipeline
Stages

i486 1989 25 MHz 5
Pentium 1993 66 MHz 5
Pentium Pro 1997 200 MHz 10
P4 Willamette 2001 2000 MHz 22
P4 Prescott 2004 3600 MHz 31
Core 2 Conroe 2006 2930 MHz 14
Core 2 Yorkfield 2008 2930 MHz 16
Core i7 Gulftown 2010 3460 MHz 16

Pipeline depths and frequency at introduction.

What
Happened?

There is a cost to deep pipelines

10/12/11 9

Microprocessor Year Clock Rate Pipeline
Stages

Power

i486 1989 25 MHz 5 5W
Pentium 1993 66 MHz 5 10W
Pentium Pro 1997 200 MHz 10 29W
P4 Willamette 2001 2000 MHz 22 75W
P4 Prescott 2004 3600 MHz 31 103W
Core 2 Conroe 2006 2930 MHz 14 75W
Core 2 Yorkfield 2008 2930 MHz 16 95W
Core i7 Gulftown 2010 3460 MHz 16 130W

  Two effects:
—  Diminishing returns: pipeline register latency becomes significant
—  Negatively impacts CPI (longer stalls, more instructions flushed)

10/12/11 10

Mitigating CPI loss 1: Dynamic Branch Prediction

  “Predict not-taken” is cheap, but
—  Some branches are almost always taken

•  Like loop back edges.

  It turns out, instructions tend to do the same things over and over again
—  Idea: Use past history to predict future behavior
—  First attempt:

•  Keep 1 bit per branch that remembers last outcome

  What fraction of time will the highlighted branch mispredict?

for (int i = 0 ; i < 1000 ; i ++) {
 for (int j = 0 ; j < 10 ; j ++) {
 // do something
 }
}

10/12/11 11

Two-bit branch prediction

  Solution: add longer term memory (hysteresis)

  Use a saturating 2-bit counter:
—  Increment when branch taken
—  Decrement when branch not-taken
—  Use top bit as prediction

  How often will the branch mispredict?

T T T T T T T T T NT T T T T T …

Branch prediction tables

  Too expensive to keep 2 bits per branch in the program
  Instead keep a fixed sized table in the processor

—  Say 1024 2-bit counters.

  “Hash” the program counter (PC) to construct an index:
—  Index = (PC >> 2) ^ (PC >> 12)

  Multiple branches will map to the same entry (interference)
—  But generally not at the same time

•  Programs tend to have working sets.

10/12/11 12

When to predict branches?

  Need:
—  PC (to access predictor)
—  To know it is a branch (must have decoded the instruction)
—  The branch target (computed from the instruction bits)

  How many flushes on a not taken prediction?
  How many flushes on a taken prediction?
  Is this the best we can do?

10/12/11 13

Mitigating CPI loss 1: Branch Target Buffers

  Need:
—  PC
—  To know it is a branch
—  The branch target

  Create a table: Branch Target Buffer

—  Allocate an entry whenever a branch is taken (& not already present)

10/12/11 14

Already have at fetch.

Can remember and make available at fetch

PC 2-bit counter target

BTB accessed in parallel with reading the instruction

  If matching entry found, and …
  2-bit counter predicts taken

—  Redirect fetch to branch target
—  Instead of PC+4

  What is the taken branch penalty?
—  (i.e., how many flushes on a

predicted taken branch?)

10/12/11 15

Instruction
memory

Instruction
[31-0]

4

P
C

 Add

1

0

Misprediction

Read
address

1 0 Match
& Taken

Target

PC
BTB

from EX stage

10/12/11 16

CPU timeX,P = Instructions executedP * CPIX,P * Clock cycle timeX

  Removing stalls & flushes can bring CPI down 1.
—  Can we bring it lower?

Back to our equation for execution time

Multiple Issue

10/12/11 17

Issue width over time

10/12/11 18

Microprocessor Year Clock Rate Pipeline
Stages

Issue
width

i486 1989 25 MHz 5 1
Pentium 1993 66 MHz 5 2
Pentium Pro 1997 200 MHz 10 3
P4 Willamette 2001 2000 MHz 22 3
P4 Prescott 2004 3600 MHz 31 3
Core 2 Conroe 2006 2930 MHz 14 4
Core 2 Yorkfield 2008 2930 MHz 16 4
Core i7 Gulftown 2010 3460 MHz 16 4

10/12/11

Static Multiple Issue

  Compiler groups instructions into issue packets
—  Group of instructions that can be issued on a single cycle
—  Determined by pipeline resources required

  Think of an issue packet as a very long instruction
—  Specifies multiple concurrent operations

  Compiler must remove some/all hazards
—  Reorder instructions into issue packets
—  No dependencies within a packet
—  Pad with nop if necessary

19

10/12/11

Example: MIPS with Static Dual Issue

  Dual-issue packets
— One ALU/branch instruction
— One load/store instruction
—  64-bit aligned

•  ALU/branch, then load/store
•  Pad an unused instruction with nop

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

20

10/12/11

Hazards in the Dual-Issue MIPS

  More instructions executing in parallel
  EX data hazard

—  Forwarding avoided stalls with single-issue
— Now can’t use ALU result in load/store in same packet

• add $t0, $s0, $s1
load $s2, 0($t0)

•  Split into two packets, effectively a stall
  Load-use hazard

—  Still one cycle use latency, but now two instructions
  More aggressive scheduling required

21

10/12/11

Scheduling Example

  Schedule this for dual-issue MIPS

Loop: lw $t0, 0($s1) # $t0=array element
 addu $t0, $t0, $s2 # add scalar in $s2
 sw $t0, 0($s1) # store result
 addi $s1, $s1,–4 # decrement pointer
 bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle
Loop: nop lw $t0, 0($s1) 1

addi $s1, $s1,–4 nop 2

addu $t0, $t0, $s2 nop 3

bne $s1, $zero,
Loop

sw $t0, 4($s1) 4

  IPC = 5/4 = 1.25 (c.f. peak IPC = 2)
22

10/12/11

Loop Unrolling

  Replicate loop body to expose more parallelism
—  Reduces loop-control overhead

  Use different registers per replication
—  Called register renaming
—  Avoid loop-carried anti-dependencies

•  Store followed by a load of the same register
•  Aka “name dependence”

 Reuse of a register name

23

10/12/11

Loop Unrolling Example

  IPC = 14/8 = 1.75
— Closer to 2, but at cost of registers and code size

ALU/branch Load/store cycle
Loop: addi $s1, $s1,–16 lw $t0, 0($s1) 1

nop lw $t1, 12($s1) 2

addu $t0, $t0, $s2 lw $t2, 8($s1) 3

addu $t1, $t1, $s2 lw $t3, 4($s1) 4

addu $t2, $t2, $s2 sw $t0, 16($s1) 5

addu $t3, $t4, $s2 sw $t1, 12($s1) 6

nop sw $t2, 8($s1) 7

bne $s1, $zero,
Loop

sw $t3, 4($s1) 8

24

Dynamic Multiple Issue = Superscalar

  CPU decides whether to issue 0, 1, 2, … instructions each cycle
—  Avoiding structural and data hazards

  Avoids need for compiler scheduling
—  Though it may still help
—  Code semantics ensured by the CPU

•  By stalling appropriately

  Limited benefit without compiler support
—  Adjacent instructions are often dependent

10/12/11 25

Out-of-order Execution (Dynamic Scheduling)

  Allow the CPU to execute instructions out of order to avoid stalls
—  But commit result to registers in order

  Example
 lw $t0, 20($s2)
add $t1, $t0, $t2
sub $s4, $s4, $t3
slti $t5, $s4, 20

—  Can start sub while add is waiting for lw

  Why not just let the compiler schedule code?

10/12/11 26

Out-of-order Scheduling

  Allow the CPU to execute instructions out of order to avoid stalls
—  But commit result to registers in order

  Example
 lw $t0, 20($s2)
add $t1, $t0, $t2
sub $s4, $s4, $t3
slti $t5, $s4, 20

—  Can start sub while add is waiting for lw

  Why not just let the compiler schedule code?
—  Not all stalls are predicable

•  e.g., we’ll see shortly that memory has variable latency
—  Can’t always schedule around branches

•  Branch outcome is dynamically determined (i.e., predicted
—  Different implementations have different latencies and hazards

10/12/11 27

Implementing Out-of-Order Execution

Basically, unroll loops in hardware:
1.  Fetch instructions in program order (≤4/clock)
2.  Predict branches as taken/not-taken
3.  To avoid hazards on registers, rename registers using a set of internal

registers (~80 registers)
4.  Collection of renamed instructions might execute in a window (~60

instructions)
5.  Execute instructions with ready operands in 1 of multiple functional units

(ALUs, FPUs, Ld/St)
6.  Buffer results of executed instructions until predicted branches are

resolved in reorder buffer
7.  If predicted branch correctly, commit results in program order
8.  If predicted branch incorrectly, discard all dependent results and start

with correct PC

10/12/11 28

10/12/11

Dynamically Scheduled CPU

Results also sent
to any waiting
reservation
stations

Reorders buffer
for register writes Can supply

operands for
issued
instructions

Preserves
dependencies

Hold pending
operands

29

10/12/11 30

Takeaway points

  The 5-stage pipeline is not a bad mental model for SW developers:
—  Integer arithmetic is cheap
—  Loads can be relatively expensive

•  Especially if there is not other work to be done (e.g., linked list
traversals)

•  We’ll further explain why starting on Friday
—  Branches can be relatively expensive

•  But, primarily if they are not predictable

  In addition, try to avoid long serial dependences; given double D[10]
•  ((D[0] + D[1]) + (D[2] + D[3])) + ((D[4] + D[5]) + (D[6] + D[7]))

—  Is faster than:
•  (((((((D[0] + D[1]) + D[2]) + D[3]) + D[4]) + D[5]) + D[6]) + D[7])

  There is phenomenal engineering in modern processors

