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Pipeline Architecture since 1985 

  Last time, we completed the 5-stage pipeline MIPS. 
—  Processors like this were first shipped around 1985 
—  Still a fundamentally solid design 

  Nevertheless, there have been advances in the past 25 years. 
—  Deeper Pipelines 
—  Dynamic Branch Prediction 
—  Branch Target Buffers (removing the taken branch penalty) 
—  Multiple Issue / Superscalar 
—  Out-of-order Scheduling 

  I will briefly overview these ideas 
—  For more complete coverage, see CS433 



Informal Early Feedback, Part I 

  Top likes:  (in order of frequency) 
—  Presentation style 
—  Handouts & in-class questions 
—  Piazza 
—  Everything 
—  Discussion sections 
—  Slides 
—  SPIMbot 
—  Appropriate MPs 
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Informal Early Feedback, Part II 

  Top wants:  (in order of frequency) 
—  Video record lecture 
—  Upload annotated lecture slides / MP solutions faster 
—  Release slides before lecture 
—  More (online) practice problems 
—  More office hours 
—  More SPIMbot testcases 
—  Motivate the hardware material  
—  List corresponding readings 
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Informal Early Feedback, Part III 

  Top gripes:  (in order of frequency) 
—  Xspim is janky (use QtSpim) 
—  EWS machines suck, let us run on our own computers 
—  Drop handin, use SVN 
—  Errors in MPs 
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  Make things faster by making any component smaller!! 

CPU timeX,P  =  Instructions executedP * CPIX,P * Clock cycle timeX 

  We proposed pipelining to reduce clock cycle time. 
—  If some is good, more is better right? 

Recall our equation for execution time 

Hardware can affect these 



“Superpipeling” 
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MIPS R4000 



More Superpipelining 
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Historical data from Intel’s processors 
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Microprocessor Year Clock Rate Pipeline 
Stages 

i486 1989 25 MHz 5 
Pentium 1993 66 MHz 5 
Pentium Pro 1997 200 MHz 10 
P4 Willamette 2001 2000 MHz 22 
P4 Prescott 2004 3600 MHz 31 
Core 2 Conroe 2006 2930 MHz 14 
Core 2 Yorkfield 2008 2930 MHz 16 
Core i7 Gulftown 2010 3460 MHz 16 

Pipeline depths and frequency at introduction. 

What  
Happened? 



There is a cost to deep pipelines 
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Microprocessor Year Clock Rate Pipeline 
Stages 

Power 

i486 1989 25 MHz 5 5W 
Pentium 1993 66 MHz 5 10W 
Pentium Pro 1997 200 MHz 10 29W 
P4 Willamette 2001 2000 MHz 22 75W 
P4 Prescott 2004 3600 MHz 31 103W 
Core 2 Conroe 2006 2930 MHz 14 75W 
Core 2 Yorkfield 2008 2930 MHz 16 95W 
Core i7 Gulftown 2010 3460 MHz 16 130W 

  Two effects: 
—  Diminishing returns: pipeline register latency becomes significant 
—  Negatively impacts CPI (longer stalls, more instructions flushed) 
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Mitigating CPI loss 1: Dynamic Branch Prediction 

  “Predict not-taken” is cheap, but 
—  Some branches are almost always taken 

•  Like loop back edges. 

  It turns out, instructions tend to do the same things over and over again 
—  Idea: Use past history to predict future behavior 
—  First attempt:  

•  Keep 1 bit per branch that remembers last outcome 

  What fraction of time will the highlighted branch mispredict? 

for (int i = 0 ; i < 1000 ; i ++) {
     for (int j = 0 ; j < 10 ; j ++) {
          // do something
     }
}
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Two-bit branch prediction 

  Solution: add longer term memory (hysteresis) 

  Use a saturating 2-bit counter: 
—  Increment when branch taken 
—  Decrement when branch not-taken 
—  Use top bit as prediction 

  How often will the branch mispredict? 

T  T  T  T  T  T  T  T  T  NT  T  T  T  T  T … 



Branch prediction tables 

  Too expensive to keep 2 bits per branch in the program 
  Instead keep a fixed sized table in the processor 

—  Say 1024 2-bit counters. 

  “Hash” the program counter (PC) to construct an index: 
—  Index = (PC >> 2) ^ (PC >> 12) 

  Multiple branches will map to the same entry (interference) 
—  But generally not at the same time 

•  Programs tend to have working sets. 
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When to predict branches? 

  Need: 
—  PC (to access predictor) 
—  To know it is a branch (must have decoded the instruction) 
—  The branch target (computed from the instruction bits) 

  How many flushes on a not taken prediction? 
  How many flushes on a taken prediction? 
  Is this the best we can do? 
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Mitigating CPI loss 1: Branch Target Buffers 

  Need: 
—  PC 
—  To know it is a branch 
—  The branch target  

  Create a table:  Branch Target Buffer 

—  Allocate an entry whenever a branch is taken (& not already present) 
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Already have at fetch. 

Can remember and make available at fetch 

PC 2-bit counter target 



BTB accessed in parallel with reading the instruction 

  If matching entry found, and … 
  2-bit counter predicts taken 

—  Redirect fetch to branch target 
—  Instead of PC+4 

  What is the taken branch penalty? 
—  (i.e., how many flushes on a 

predicted taken branch?) 
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CPU timeX,P  =  Instructions executedP * CPIX,P * Clock cycle timeX 

  Removing stalls & flushes can bring CPI down 1. 
—  Can we bring it lower? 

Back to our equation for execution time 



Multiple Issue 
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Issue width over time 
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Microprocessor Year Clock Rate Pipeline 
Stages 

Issue 
width 

i486 1989 25 MHz 5 1 
Pentium 1993 66 MHz 5 2 
Pentium Pro 1997 200 MHz 10 3 
P4 Willamette 2001 2000 MHz 22 3 
P4 Prescott 2004 3600 MHz 31 3 
Core 2 Conroe 2006 2930 MHz 14 4 
Core 2 Yorkfield 2008 2930 MHz 16 4 
Core i7 Gulftown 2010 3460 MHz 16 4 
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Static Multiple Issue 

  Compiler groups instructions into issue packets 
—  Group of instructions that can be issued on a single cycle 
—  Determined by pipeline resources required 

  Think of an issue packet as a very long instruction 
—  Specifies multiple concurrent operations 

  Compiler must remove some/all hazards 
—  Reorder instructions into issue packets 
—  No dependencies within a packet 
—  Pad with nop if necessary 

19 
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Example: MIPS with Static Dual Issue 

  Dual-issue packets 
— One ALU/branch instruction 
— One load/store instruction 
—  64-bit aligned 

•  ALU/branch, then load/store 
•  Pad an unused instruction with nop 

Address Instruction type Pipeline Stages 

n ALU/branch IF ID EX MEM WB 

n + 4 Load/store IF ID EX MEM WB 

n + 8 ALU/branch IF ID EX MEM WB 

n + 12 Load/store IF ID EX MEM WB 

n + 16 ALU/branch IF ID EX MEM WB 

n + 20 Load/store IF ID EX MEM WB 
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Hazards in the Dual-Issue MIPS 

  More instructions executing in parallel 
  EX data hazard 

—  Forwarding avoided stalls with single-issue 
— Now can’t use ALU result in load/store in same packet 

• add  $t0, $s0, $s1 
load $s2, 0($t0) 

•  Split into two packets, effectively a stall 
  Load-use hazard 

—  Still one cycle use latency, but now two instructions 
  More aggressive scheduling required 
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Scheduling Example 

  Schedule this for dual-issue MIPS 

Loop: lw   $t0, 0($s1)      # $t0=array element 
      addu $t0, $t0, $s2    # add scalar in $s2 
      sw   $t0, 0($s1)      # store result 
      addi $s1, $s1,–4      # decrement pointer 
      bne  $s1, $zero, Loop # branch $s1!=0 

ALU/branch Load/store cycle 
Loop: nop lw   $t0, 0($s1) 1 

addi $s1, $s1,–4 nop 2 

addu $t0, $t0, $s2 nop 3 

bne  $s1, $zero, 
Loop 

sw   $t0, 4($s1) 4 

  IPC = 5/4 = 1.25 (c.f. peak IPC = 2) 
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Loop Unrolling 

  Replicate loop body to expose more parallelism 
—  Reduces loop-control overhead 

  Use different registers per replication 
—  Called register renaming 
—  Avoid loop-carried anti-dependencies 

•  Store followed by a load of the same register 
•  Aka “name dependence”  

 Reuse of a register name 
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Loop Unrolling Example 

  IPC = 14/8 = 1.75 
— Closer to 2, but at cost of registers and code size 

ALU/branch Load/store cycle 
Loop: addi $s1, $s1,–16 lw   $t0, 0($s1) 1 

nop lw   $t1, 12($s1) 2 

addu $t0, $t0, $s2 lw   $t2, 8($s1) 3 

addu $t1, $t1, $s2 lw   $t3, 4($s1) 4 

addu $t2, $t2, $s2 sw   $t0, 16($s1) 5 

addu $t3, $t4, $s2 sw   $t1, 12($s1) 6 

nop sw   $t2, 8($s1) 7 

bne  $s1, $zero, 
Loop 

sw   $t3, 4($s1) 8 
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Dynamic Multiple Issue = Superscalar 

  CPU decides whether to issue 0, 1, 2, … instructions each cycle 
—  Avoiding structural and data hazards 

  Avoids need for compiler scheduling 
—  Though it may still help 
—  Code semantics ensured by the CPU 

•  By stalling appropriately 

  Limited benefit without compiler support 
—  Adjacent instructions are often dependent 
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Out-of-order Execution (Dynamic Scheduling) 

  Allow the CPU to execute instructions out of order to avoid stalls 
—  But commit result to registers in order 

  Example 
 lw    $t0, 20($s2) 
add   $t1, $t0, $t2 
sub   $s4, $s4, $t3 
slti  $t5, $s4, 20 

—  Can start sub while add is waiting for lw 

  Why not just let the compiler schedule code? 
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Out-of-order Scheduling 

  Allow the CPU to execute instructions out of order to avoid stalls 
—  But commit result to registers in order 

  Example 
 lw    $t0, 20($s2) 
add   $t1, $t0, $t2 
sub   $s4, $s4, $t3 
slti  $t5, $s4, 20 

—  Can start sub while add is waiting for lw 

  Why not just let the compiler schedule code? 
—  Not all stalls are predicable 

•  e.g., we’ll see shortly that memory has variable latency 
—  Can’t always schedule around branches 

•  Branch outcome is dynamically determined (i.e., predicted 
—  Different implementations have different latencies and hazards 
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Implementing Out-of-Order Execution 

Basically, unroll loops in hardware: 
1.  Fetch instructions in program order (≤4/clock) 
2.  Predict branches as taken/not-taken 
3.  To avoid hazards on registers, rename registers using a set of internal 

registers (~80 registers) 
4.  Collection of renamed  instructions might execute in a window (~60 

instructions) 
5.  Execute instructions with ready operands in 1 of multiple functional units 

(ALUs, FPUs, Ld/St) 
6.  Buffer results of executed instructions until predicted branches are 

resolved in reorder buffer 
7.  If predicted branch correctly, commit results in program order 
8.  If predicted branch incorrectly, discard all dependent results  and start 

with correct PC 
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Dynamically Scheduled CPU 

Results also sent 
to any waiting 
reservation 
stations 

Reorders buffer 
for register writes Can supply 

operands for 
issued 
instructions 

Preserves 
dependencies 

Hold pending 
operands 
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Takeaway points 

  The 5-stage pipeline is not a bad mental model for SW developers: 
—  Integer arithmetic is cheap 
—  Loads can be relatively expensive 

•  Especially if there is not other work to be done (e.g., linked list 
traversals) 

•  We’ll further explain why starting on Friday 
—  Branches can be relatively expensive 

•  But, primarily if they are not predictable  

  In addition, try to avoid long serial dependences; given double D[10] 
•   ((D[0] + D[1]) + (D[2] + D[3])) + ((D[4] + D[5]) + (D[6] + D[7])) 

—  Is faster than: 
•   (((((((D[0] + D[1]) + D[2]) + D[3]) + D[4]) + D[5]) + D[6]) + D[7]) 

  There is phenomenal engineering in modern processors 


