ROBOTS MÓVILES

Dr. Jesús Savage Carmona

Objetivos del curso:

Entrenar y especializar a los alumnos en el área de los robots móviles.

1 INTRODUCCIÓN Y GENERALIDADES

Objetivo: El alumno describirá los elementos constitutivos y fundamentales de los robot móviles, así como su funcionamiento lógico y físico.

Contenido:

- 1.1 Componentes básicos de un robot.
- 1.2 Tipos de Arquitecturas
 - 1.2.1 Modelos Tradicionales
 - 1.2.2 Modelos Reactivos
 - 1.2.3 Modelos Híbridos
 - 1.2.4 Modelos Probabilísticos

2 MODELOS TRADICIONALES

Objetivo: El alumno aprenderá los modelos tradicionales para operar robots móviles.

Contenido:

- 2.1 Configuración y representación del medio ambiente
 - 2.1.1 Representación de los obstáculos
 - 2.1.2 Descomposición del espacio en celdas
 - 2.1.3 Mapas Geométricos
 - 2.1.4 Diagramas de Voronoi
 - 2.1.5 Mapas Topológicos
- 2.2 Planeación
 - 2.2.1 Uso de técnicas de Inteligencia Artificial para recorrer redes topológicas
 - 2.2.1.1 Algoritmos de búsqueda en redes topológicas, búsqueda a lo ancho, A*, Dikjstra, etc
 - 2.2.2 Planeación de Acciones
- 2.3 Navegación
 - 2.3.1 Descripción de posiciones y orientaciones
 - 2.3.2 Ecuaciones de movimientos
- 2.4 Representación del Conocimiento
 - 2.4.1 Sistemas basados en reglas, CLIPS (NASA)
 - 2.4.2 Lógica Difusa

3 MODELOS REACTIVOS

Objetivo: El alumno aprenderá los modelos reactivos para operar robots móviles. **Contenido:**

- 3.1 Comportamientos con Máquinas de Estado Finitas Aumentadas (AFSM)
 - 3.1.1 Algoritmo Bug I y II
- 3.2 Comportamientos con Campos Potenciales Artificiales
 - 3.2.1 Potenciales Atractivos y Repulsivos
 - 3.2.2 Planeación de Trayectorias Guiadas por Campos Potenciales

- 3.3 Comportamientos Usando Redes Neuronales
- 3.4 Comportamientos Usando Algoritmos y Programación Genética

4 MODELOS HIBRIDOS

Objetivo: El alumno aprenderá los modelos híbridos para operar robots móviles .

Contenido:

- 4.1 Combinación de los modelos tradicionales con los modelos reactivos.
- 4.2 Ejemplos: ViRbot, Homer, Golem, etc.

5 MODELOS PROBABILÍSTICOS

Objetivo: El alumno aprenderá los modelos probabilísticos para operar robots móviles y agentes inteligentes.

Contenido:

- 5.1 Creación de Mapas
 - 5.1.1 Cuantización Vectorial
 - 5.1.2 Diagramas de Voronoi
 - 5.1.3 Mapas Topológicos
 - 5.1.4 Mapas Probabilísticos
- 5.2 Localización
 - 5.2.1 Triangulación
 - 5.2.2 Cadenas de Markov Ocultos
 - 5.2.3 Filtros de Kalman
 - 5.2.4 Localización y creación de mapas simultáneamente (SLAM)
- 5.3 Navegación Probabilística
 - 5.3.1 Máquinas de estados probalísticas usando cadenas de Markov Ocultas (HMM)

6 HERRAMIENTAS DE SOFTWARE PARA OPERAR ROBOTS MÓVILES

Objetivo: El alumno aprenderá a usar las herramientas para operar robots móviles **Contenido:**

6.1 Sistema Operativo de robots (ROS)

Bibliografía

- * Howie Choset, Principles of Robot Motion, Theory, Algorithms, and Implementations, The MIT Press 2005.
- * Ronald C. Arkin. Behavior-Based Robotics. The MIT Press 1998.
- * J. Jones, Robot Programming, A Practical Guide to Behavior Robotics, .McGraw-Hill, 2004
- * Jorg P. Muller. The Design of Intelligent Agents, Springer. 1998
- * Sebastian Thrun. Probabilistic Robotics. The MIT Press 2005.
- * Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publisher, 1991
- * J. Jones, A. Flynn, Movile Robots. A.K. Peters LTD, 1993
- * Robot Operating System (ROS), Anis Koubaa, Springer, 2016
- * Manuales técnicos de programación de CLIPS.
- * Notas técnicas de inteligencia artificial

Evaluación

1 examen	30%
Practicas	40%
Proyecto	30%