# Lección 12: Redes Neuronales Artificiales

Jesús Savage

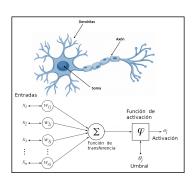
24 de mayo de 2021

## Índice

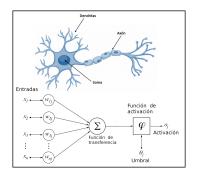
- Redes Neuronales Artificiales
- Omportamientos de Robots Usando Redes Neuronales Artificiales

#### Modelos de Redes Neuronales Artificiales

El modelo matemático del comportamiento de una neurona fue propuesto en 1943 por McCullock. En este modelo la neurona cuenta con varias entradas las cuales están multiplicadas por ciertos pesos, éstas se suman y si la suma es más grande que un umbral,  $\theta$ , la neurona se activa, en caso contrario se encuentra desactivada.



#### Modelos de Redes Neuronales Artificiales



Las entradas de la neurona son  $x_i$ , las cuales pueden provenir de las entradas al sistema o de las salidas de otras neuronas. Los pesos  $w_i$  multiplican cada una de las entradas.

$$u = \sum_{i=1}^{n} w_i x_i - \ell$$

#### Redes Neuronales Artificiales

El umbral de activación o sesgo,  $\theta$ , se puede incorporar como una entrada con  $x_0=1$ , multiplicada por una constante  $w_0=-\theta$ 

$$u = \sum_{i=0}^{n} w_i x_i$$

La salida de la neurona es generada por una función de activación no lineal y = f(u). Generalmente f(u) es una función sigmoide, como se muestra a continuación:

$$f(u) = \frac{1}{1 + e^{\frac{-u}{T}}}$$

Donde T es una constante.

#### Función de Activación

Una característica importante de f(u) es que su derivada esta en función de ella misma.

$$\frac{df(u)}{du} = \frac{d}{du} \left( \frac{1}{1 + e^{\frac{-u}{T}}} \right) = \frac{d}{du} \left( 1 + e^{\frac{-u}{T}} \right)^{-1}$$

$$= -\left( 1 + e^{\frac{-u}{T}} \right)^{-2} \cdot \frac{-1}{T} \left( e^{\frac{-u}{T}} \right)$$

$$= \frac{1}{T} \cdot \frac{1}{1 + e^{\frac{-u}{T}}} \cdot \frac{e^{\frac{-u}{T}}}{1 + e^{\frac{-u}{T}}} = \frac{1}{T} \cdot \frac{1}{1 + e^{\frac{-u}{T}}} \cdot \frac{1 + e^{\frac{-u}{T}} - 1}{1 + e^{\frac{-u}{T}}}$$

$$= \frac{1}{T} \cdot \frac{1}{1 + e^{\frac{-u}{T}}} \cdot \left( \frac{1 + e^{\frac{-u}{T}}}{1 + e^{\frac{-u}{T}}} - \frac{1}{1 + e^{\frac{-u}{T}}} \right) = \frac{1}{T} f(u) (1 - f(u))$$

## Modelo del Perceptrón

El modelo del Perceptrón fue propuesto por Rosenblatt y puede ser utilizado para *detección y clasificación*.

$$u = \sum_{i=1}^{n} w_i x_i - \theta$$

En este modelo la función de activación f(u) es un escalón.

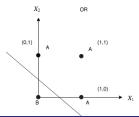
$$y = \begin{cases} 1, & u \ge 0 \\ 0, & u < 0 \end{cases}$$



#### Modelo del Perceptrón

Desde que fue propuesto el Perceptrón se probó tratando de resolver problemas básicos desde el punto de vista de un classificador, como el resolver las ecuaciones booleanas OR, AND y XOR. Para una compuerta OR:

| $X_1, X_2$ | OR | Clase |  |
|------------|----|-------|--|
| 0 0        | 0  | В     |  |
| 0 1        | 1  | A     |  |
| 1 0        | 1  | A     |  |
| 1.1        | 1  | А     |  |



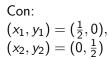
# Compuerta Lógica OR

La recta que separa las dos clases es:

$$y = m x + b =$$

$$m = \frac{(y_2 - y_1)}{(x_2 - x_1)}$$

$$b = \frac{y_1 x_2 - y_2 x_1}{x_2 - x_1}$$





## Compuerta Lógica OR

$$m = \frac{\frac{1}{2}}{-\frac{1}{2}} = -1, b = \frac{-\frac{1}{4}}{-\frac{1}{2}} = \frac{1}{2}$$

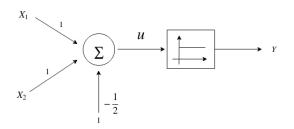
Por lo tanto la ecuación de la recta que separa las dos clases es:

$$y = -x + \frac{1}{2}$$
$$y + x - \frac{1}{2} = 0$$

Para una neurona que haga la separación del espacio

$$f(w_2 X_2 + w_1 X_1 - w_0)$$

#### Compuerta Lógica OR Usando un Perceptrón



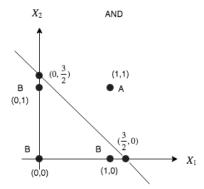
$$w_2 = 1$$
,  $w_1 = 1$ ,  $w_0 = -\frac{1}{2}$   
 $f(X_2 + X_1 - \frac{1}{2})$ 

## Compuerta Lógica OR Usando un Perceptrón

| $X_1, X_2$ | и                            | NN - OR |
|------------|------------------------------|---------|
| 0 0        | $-\frac{1}{2}$               | 0       |
| 0 1        | $+\frac{1}{2}$               | 1       |
| 1 0        | $+\frac{1}{2} + \frac{3}{2}$ | 1       |
| 1 1        | $+\frac{3}{2}$               | 1       |

# Compuerta Lógica AND

| $X_1, X_2$ | AND | Clase |  |
|------------|-----|-------|--|
| 0 0        | 0   | В     |  |
| 0 1        | 0   | В     |  |
| 1 0        | 0   | В     |  |
| 1 1        | 1   | A     |  |

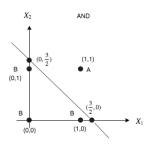


# Compuerta Lógica AND

$$(x_1, y_1) = (\frac{3}{2}, 0)$$
  
 $(x_2, y_2) = (0, \frac{3}{2})$ 

$$m = \frac{(y_2 - y_1)}{(x_2 - x_1)} = \frac{\frac{3}{2}}{-\frac{3}{2}} = -1$$

$$b = \frac{y_1 x_2 - y_2 x_1}{x_2 - x_1} = \frac{-\frac{9}{4}}{-\frac{3}{2}} = \frac{3}{2}$$



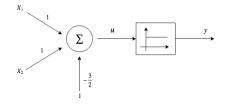
## Compuerta Lógica AND Usando un Perceptrón

$$y = mx + b = -x + \frac{3}{2}$$

$$y + x - \frac{3}{2} = 0$$

$$f(w_2 X_2 + w_1 X_1 - w_0)$$

$$= f(X_2 + X_1 - \frac{3}{2})$$



# Compuerta Lógica AND Usando un Perceptrón

$$X_2 + X_1 - \frac{3}{2}$$

$$0 + 0 - \frac{3}{2} \le 0 \implies B$$

$$0 + 1 - \frac{3}{2} \le 0 \implies B$$

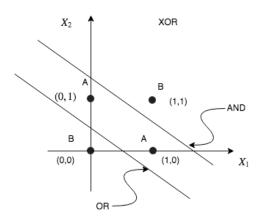
$$1 + 0 - \frac{3}{2} \le 0 \implies B$$

$$1 + 1 - \frac{3}{2} > 0 \implies A$$

| $X_1, X_2$ | и              | NN - AND |
|------------|----------------|----------|
| 0 0        | $-\frac{3}{2}$ | 0        |
| 0 1        | $-\frac{1}{2}$ | 0        |
| 1 0        | $-\frac{1}{2}$ | 0        |
| 1 1        | $\frac{1}{2}$  | 1        |

## Compuerta Lógica XOR

No se puede construir una compuerta XOR con una sola neurona, ya que el espacio se tiene que separar en tres regiones diferentes, por lo que se necesitan dos neuronas para lograr ésto.



# Compuerta Lógica XOR

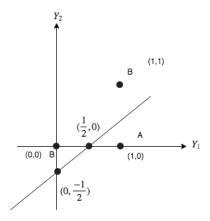
Se puede observar que la primera recta cumple con la ecuación de una OR y la segunda con la de una AND

| OR         |                      |                    |
|------------|----------------------|--------------------|
| $w_2 = 1,$ | $w_1=1,$             | $w_0=-\frac{1}{2}$ |
| $f(X_2 +$  | $-X_1 - \frac{1}{2}$ | ) = <i>Y</i> 1     |
| AND        | _                    |                    |
| $w_2=1,$   | $w_1=1,$             | $w_0=-\frac{3}{2}$ |
| $f(X_2 +$  | $-X_1-\frac{3}{2}$ ) | = Y2               |

|            | NN<br>OR , AND | N<br>XOR |
|------------|----------------|----------|
| $X_1, X_2$ | $Y_1, Y_2$     | Υ        |
| 0 0        | 0 0            | В 0      |
| 0 1        | 1 0            | A 1      |
| 1 0        | 1 0            | A 1      |
| 1 1        | 1 1            | В 0      |

#### Transformación XOR

Con esta transformación se puede observar como las dos clases quedan separadas por una recta



### Compuerta Lógica XOR Usando Perceptrones

$$(x_1, y_1) = (\frac{1}{2}, 0)$$

$$(x_2, y_2) = (0, -\frac{1}{2})$$

$$m = \frac{(-\frac{1}{2})}{-\frac{1}{2}} = +1$$

$$b = \frac{+\frac{1}{4}}{-\frac{1}{2}} = -\frac{1}{2}$$

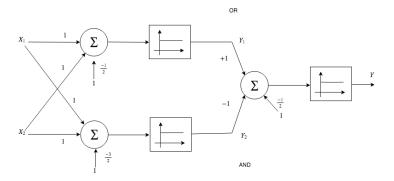
$$y - x + \frac{1}{2} = 0$$

$$f(w_2 Y_2 - w_1 Y_1 + w_0)$$

# Compuerta Lógica XOR Usando Perceptrones

Ecuación de la recta que cumple con la desigualdad, pero no para ponerla en la NN.

$$Y_2 - Y_1 + \frac{1}{2} = 0 \Rightarrow -Y_2 + Y_1 - \frac{1}{2} = 0$$



### Compuerta Lógica XOR Usando Perceptrones

$$-Y_2 + Y_1 - \frac{1}{2}$$

$$0 + 0 - \frac{1}{2} \le 0 \Rightarrow B$$

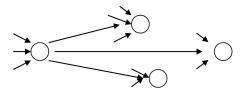
$$0 + 1 - \frac{1}{2} > 0 \Rightarrow A$$

$$-1 + 1 - \frac{1}{2} \le 0 \Rightarrow B$$

|            | NN                                                         |                              |        |
|------------|------------------------------------------------------------|------------------------------|--------|
|            | OR , AND                                                   |                              |        |
| $X_1, X_2$ | $Y_1, Y_2$                                                 | $u \rightarrow f(u)$         | NN-XOR |
| 0 0        | $\frac{-1}{2} \to 0 \ , \frac{-3}{2} \to 0$                | $\frac{-1}{2} \rightarrow 0$ | 0      |
| 0 1        | $\frac{1}{2} \to 1 , \frac{-1}{2} \to 0$                   | $\frac{1}{2} \rightarrow 1$  | 1      |
| 1 0        | $\frac{1}{2} \rightarrow 1 \ , \frac{-1}{2} \rightarrow 0$ | $\frac{1}{2} \rightarrow 1$  | 1      |
| 1 1        | $\frac{3}{2} \to 1 , \frac{1}{2} \to 1$                    | $\frac{-1}{2} \rightarrow 0$ | 0      |

#### Redes Neuronales Artificiales

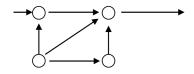
Si las salidas de un neurona se conectan a las entradas de otras se forma un red neuronal artificial.



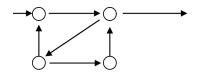
En la robótica de servicio se les pueda dar varios usos a las redes neuronales, como son el reconocimiento de patrones o para que los robots tengan comportamientos nuevos. El objetivo es encontrar los pesos W de la red que permitan tener estos comportamientos.

### Topología de Redes Neuronales

En las topología acíclica no hay retroalimentación de la neurona de salida hacia otra interna.

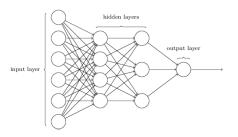


Topología cíclica hay retroalimentación de la neurona de salida con otras internas.



#### Redes Neuronales Artificiales

En una red neuronal multicapas se tienen por lo regular tres capas: una de entradas, una intermedia y una de salida.



La capa de entrada tiene M neuronas. La capa intermedia se conoce como capa oculta y tiene H neuronas. La capa de salida tiene N neuronas. El objetivo es encontrar los pesos que minimicen el error cuadrático medio de acuerdo a un patrón que se desea aprender.

# ¿Cómo encontrar los pesos?

Para una neurona con M entradas se desea que la neurona aprenda a generar una salida de acuerdo a una muestras de entrenamiento:

$$\{(\underline{x}_k, d_k); 1 \leq k \leq K\}$$

donde las  $\underline{x}_k^T = \begin{bmatrix} 1 & x_{1k} & x_{2k} ... & x_{Mk} \end{bmatrix}^T$  son las entradas a la neurona en el tiempo k y las  $d_k$  son las salidas deseadas para esas entradas y K es el número total de muestras.

#### Muestras de entrenamiento

Por ejemplo se tienen las siguientes muestras de entrenamiento, en este caso la neurona se entrena con los valores  $d_k$  para que se active con un valor cercano a uno, 0.99, y que no este activada con valores cercanos a cero, 0.01.

Cuadro: Muestras de entrenamiento

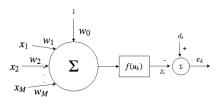
| k   | <i>x</i> <sub>0</sub> | <i>x</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | <i>X</i> 3 |     | ХM  | d    |
|-----|-----------------------|-----------------------|-----------------------|------------|-----|-----|------|
| 1   | 1                     | .14                   | .21                   | .21        |     | .01 | 0.99 |
| 2   | 1                     | .15                   | .15                   | .07        |     | .04 | 0.99 |
|     |                       |                       |                       |            |     |     |      |
| K-1 | 1                     | .35                   | .31                   | .41        | ••• | .80 | .01  |
| K   | 1                     | .33                   | .36                   | .40        |     | .84 | .01  |

#### Calculo de los pesos

Si las  $W = [w_0 \ w_1 \ w_2... \ w_M]$  son los pesos de la neurona, entonces:

$$u_k = \sum_{i=0}^n w_i \, x_{ik}$$

La salida de la neurona es:  $z_k = f(u_k) = f(\underline{W} \cdot \underline{x}_k)$ El error generado por la neurona para la muestra kesima k es:  $\varepsilon_k = d_k - z_k$ 



Generalmente los valores de  $d_k \in (0,1)$ .

El error total es:

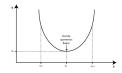
$$E = \sum_{k=1}^K \varepsilon_k^2 = \sum_{k=1}^K (d_k - z_k)^2$$

El objetivo final es minimizar la función del error total E con respecto a  $\underline{W}$ . Esta minimización lleva a un problema de optimización no lineal de mínimos cuadrados, ya que f() es una función no lineal, por lo que generalmente se realiza la minimización con metodos iterativos: Empezando con un punto  $w_{n-1}$  cualquiera, el objetivo es llegar al punto mínimo de la ecuación  $w_0$  utilizando una función recurrente:

$$w_n = h(w_{n-1})$$

## Descendiendo por la pendiente más pronunciada

Por ejemplo, para una parábola, como se muestra en la siguiente figura:



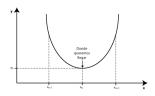
Para encontrar el mínimo de la función, se observa que empezando en un punto  $w_{n-1}$  a la izquierda del punto  $w_0$ , en donde se encuentra el mínimo de la función, se tendría que sumar a  $w_{n-1}$  una cierta cantidad para acercarse a  $w_0$ . Por otra parte si  $w_{n-1}$  esta a la izquierda de  $w_0$ , se le tendría que restar también una cierta cantidad para acercarse a  $w_0$ . Se puede observar que la cantidad a sumar o restar esta inversamente relacionada con la derivada de la función, por lo tanto una función que acerca al punto  $w_{n-1}$  a  $w_0$  es:

$$w_n = h(w_{n-1}) = w_{n-1} - \delta \frac{dy}{dw}$$
  
En donde  $\delta$  es el tamaño del paso.

# Descendiendo por la pendiente más pronunciada

La ecuación de la parabola es:

$$y = y_0 + (w - w_0)^2$$



$$\begin{split} \frac{dy}{dw} &= 2(w-w_0) \\ w_n &= h(w_{n-1}) = w_{n-1} - \delta \, \frac{dy}{dw} \\ entonces, \, si \, \delta &= \frac{1}{2} \Rightarrow w_n = w_{n-1} - \frac{1}{2}(2(w_{n-1}-w_0)) = w_0, \\ Se \, \textit{llega al mínimo en un paso.} \end{split}$$

Esta técnica se conoce como descendiendo por la pendiente más pronunciada o steepest descent.

Por lo tanto para encontrar el vector de las  $\underline{W}$  óptimas se utilizara el método de descendiendo por la pendiente más pronunciada (steepest descent):

$$\underline{W}_{t+1} = \underline{W}_t + \Delta \underline{W}_t$$

$$\Delta \underline{W}_t = -\eta \frac{dE}{d\underline{W}}$$

Recordar que el error total es:

$$E = \sum_{k=1}^{K} \varepsilon_k^2 = \sum_{k=1}^{K} (d_k - z_k)^2$$

$$\frac{dE}{dw_i} = -2\sum_{k=1}^K (d_k - z_k)(\frac{dz_k}{dw_i})$$

Obsérvese que

$$\frac{dz_k}{dw_i} = \frac{df(u_k)}{dw_i}$$

Recordando que

$$u_k = \sum_{i=0}^M w_i \, x_{ik}$$

y utilizando el método de la cadena:

$$\frac{df(u_k)}{du_k}\frac{du_k}{dw_i} = f'(u)\frac{du_k}{dw_i} = f'(u_k)x_{ik}$$

Por lo que

$$\frac{dE}{dw_i} = -2\sum_{k=1}^K (d_k - z_k)f'(u_k)x_{ik}$$

Haciendo

$$\delta_k = 2[d_k - z_k]f'(u_k)$$

que es el error  $e_k = d_k - z_k$  modulado por la derivada de la función de activación  $f'(u_k)$ .

**Entonces** 

$$\frac{dE}{dw_i} = -\sum_{k=1}^K \delta_k x_{ik}$$

Por lo tanto la actualización esta dada por la siguiente expresión:

$$w_i(t+1) = w_i(t) + \eta \sum_{k=1}^K \delta_k x_{ik}$$

Donde  $\eta$  es una constante que da la velocidad de convergencia y se encuentra en forma empiricamente. t es el tiempo de iteración y el proceso se debe repetir hasta que el error total sea:  $E < \epsilon$ .

En particular si f(u) es una función sigmoide

$$f(u) = \frac{1}{1 + e^{\frac{-u}{T}}}$$

Donde T es una constante.

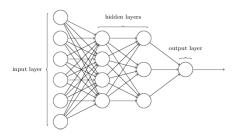
$$\frac{df(u)}{du} = \frac{1}{T}f(u)(1 - f(u))$$

entonces:

$$\delta_k = \frac{2}{T} [d_k - z_k] f(u_k) (1 - f(u_k))$$
$$= \frac{2}{T} [d_k - z_k] z_k (1 - z_k)$$

### Red Neuronal Multicapa

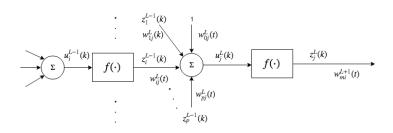
Para encontrar los pesos en una red neuronal multicapa, como la mostrada en la siguiente figura, se procede de la siguiente manera.



La neurona j, en la capa L, para la muestra de entrenamiento k genera el valor  $z_{jk}^L$ .

$$z_{jk}^{L} = f(u_{jk}) = f(\sum_{i=0}^{p} w_{ij}^{L} z_{ik}^{L-1})$$

Para la siguiente figura,  $w_{ij}^L$  es el peso que multiplica la salida de la neurona i, en la capa L-1 a la neurona j en la capa L, en la iteración t.



El objetivo es encontrar los pesos  $w_{ij}^L$  de cada capa L que minimicen el error cuadrático medio total. El error entre los valores generados por la neurona j, en la capa L, para la muestra de entrenamiento k, es decir,  $z_{jk}^L$ , y los valores deseados  $d_{ik}^L$ :

$$E_j^L = \sum_{k=1}^K (d_{jk}^L - z_{jk}^L)^2$$

Este error se minimiza encontrando los pesos  $w_{ij}^L$  óptimos. Encontrando la parcial del error con respecto a  $w_{ii}^L$ :

$$\frac{\partial E_j^L}{\partial w_{ij}^L} = -2\sum_{k=1}^K (d_{jk}^L - z_{jk}^L) \frac{\partial z_{jk}^L}{\partial w_{ij}^L}$$

Usando la regla de la cadena:

$$\frac{\partial E_j^L}{\partial w_{ij}^L} = -2\sum_{k=1}^K (d_{jk}^L - z_{jk}^L) \frac{\partial z_{jk}^L}{\partial u_{jk}^L} \frac{\partial u_{jk}^L}{\partial w_{ij}^L} = -2\sum_{k=1}^K (d_{jk}^L - z_{jk}^L) f'(u_{jk}^L) \frac{\partial u_{jk}^L}{\partial w_{ij}^L}$$

Usando la definición anterior de  $\delta_{ik}$ :

$$\delta_{jk}^{L} = 2[d_{jk}^{L} - z_{jk}^{L}]f'(u_{jk}^{L})$$

$$\frac{\partial E_{j}^{L}}{\partial w_{ij}^{L}} = -\sum_{k=1}^{K} \delta_{jk}^{L} \frac{\partial u_{jk}^{L}}{\partial w_{ij}^{L}}$$

$$= -\sum_{k=1}^{K} \delta_{jk}^{L} \frac{\partial}{\partial w_{ij}^{L}} \left(\sum_{m} w_{mj}^{L} z_{mk}^{L-1}\right)$$

#### **Entonces**

$$\frac{\partial E_j^L}{\partial w_{ij}^L} = -\sum_{k=1}^K \delta_{jk}^L z_{ik}^{L-1}$$

Se observa que el error modulado por la deriva,  $\delta^L_{jk}$ , no esta disponible ya que  $d^L_{jk}$  se desconoce para la capa L, las  $\delta^L_{jk}$  solo se conocen para la capa de salida. Entonces los errores se necesitan ir acarreando de la capa de salida a las capas interiores, esto se conoce como retropropagación (backpropagation).

La  $\delta_{ik}^L$  puede ser obtenida también de la siguiente forma:

Definiendo el error del valor generado por la neurona j en la capa L con el valor deseado  $d_{ik}^L$ :

$$E_k = (d_{jk}^L - z_{jk}^L)^2$$

$$\frac{\partial E_k}{\partial u_{jk}^L} = \frac{\partial}{\partial u_{jk}^L} (d_{jk}^L - z_{jk}^L)^2$$

$$= -2(d_{jk}^L - z_{jk}^L) \frac{\partial z_{jk}^L}{\partial u_{jk}^L}$$

$$= -2(d_{jk}^L - z_{jk}^L) f'(u_{jk}^L)$$

Usando la definición anterior de  $\delta_{ik}$ :

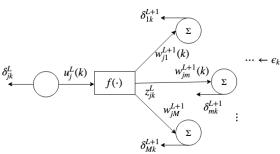
$$\delta_{jk}^{L} = 2[d_{jk}^{L} - z_{jk}^{L}]f'(u_{jk}^{L})$$

Entonces: 
$$\begin{split} \frac{\partial E_k}{\partial u_{jk}^L} &= -\delta_{jk}^L \\ -\delta_{jk}^L &= \frac{\partial E_k}{\partial u_{jk}^L} = \frac{\partial E_k}{\partial u_{jk}^L} \cdot 1 \\ &= \frac{\partial E_k}{\partial u_{jk}^L} \Big( \frac{1}{M} \sum_{m=1}^M \frac{\partial u_{mk}^{L+1}}{\partial u_{mk}^{L+1}} \Big) \\ &= \frac{1}{M} \sum_{m=1}^M \frac{\partial E_k}{\partial u_{mk}^{L+1}} \frac{\partial u_{mk}^{L+1}}{\partial u_{jk}^L} \\ &= \frac{1}{M} \sum_{m=1}^M -\delta_{mk}^{L+1} \left[ \frac{\partial}{\partial u_{jk}^L} \sum_{n=1}^N w_{nm}^{L+1} f(u_{nk}^L) \right] \\ &= \frac{1}{M} \sum_{m=1}^M -\delta_{mk}^{L+1} w_{jm}^{L+1} f'(u_{jk}^L) \end{split}$$

Por lo tanto:

$$\delta_{jk}^{L} = f'(u_{jk}^{L}) \frac{1}{M} \sum_{m=1}^{M} \delta_{mk}^{L+1} w_{jm}^{L+1}$$

Las  $\delta^L_{jk}$  dependen de las  $\delta^{L+1}_{mk}$ , es decir que se necesitan estos valores que son calculados en la siguiente etapa.



La  $\delta^L_{jk}$  en la capa de salida se calcula por la diferencia del valor deseado  $d_{jk}$  de entrenamiento con el valor obtenido por la neurona de salida  $z_{jk}$  modulada por la derivada de la función de activación.

$$\delta_{jk}^{L} = 2 \cdot \left[ d_{jk} - z_{jk}^{L} \right] z_{jk}^{L} \left[ 1 - z_{jk}^{L} \right]$$

Donde L es el valor de la última capa de salida.

Recordando que para una neurona la actualización de los pesos esta dado por:

$$w_i(t+1) = w_i(t) + \eta \sum_{i=1}^K \delta_k x_{ik}$$

Extendiendo esta expresión para una red neuronal multicapa, la fórmula de actualización es entonces:

$$w_{ij}^L(t+1) = w_{ij}^L(t) + \eta \sum_{k=1}^K \delta_{jk}^L z_{ik}^{L-1}$$

A esta última ecuación se le agrega un termino para hacer que el sistema converja más rápido, comparando los valores anteriores de los pesos. Se el agrega tambien ruido aleatorio pequeño para sacar a los pesos de mínimos locales.

$$w_{ij}^{L}(t+1) = w_{ij}^{L}(t) + \eta \sum_{k=1}^{K} \delta_{jk}^{L} z_{ik}^{L-1} + \mu [w_{ij}^{L}(t) - w_{ij}^{L}(t-1)] + \epsilon_{ij}^{L}(t)$$

La  $\eta$  da la velocidad de convergencia, si es muy grande, se puede dar la situación que se oscile demasiadas veces antes de llegar al mínimo. Por lo tanto  $\eta$  asume valores pequeños, por ejemplo,  $0 \le \eta \le 0.3$ .  $\mu$  tiene valores más grandes  $0.6 \le \mu \le 0.9$ .

Se observa que las salidas  $z_{ik}^{L-1}$  en la capa L-1 de la neurona i para la muestra de entrenamiento k son las entradas para la neurona j en la capa L. Por lo tanto para la primera capa se utilizaran las entradas  $x_{ik}$  de la red neuronal:

$$w_{ij}^{1}(t+1) = w_{ij}^{1}(t) + \eta \sum_{k=1}^{K} \delta_{jk}^{1} x_{ik} + \mu [w_{ij}^{1}(t) - w_{ij}^{1}(t-1)] + \epsilon_{ij}^{1}(t)$$

#### Implementación del algoritmo para encontrar los pesos

- 1. Se configura la red indicando el número de entradas N, el número de capas L, el número de neuronas por capa  $N_i$ ,  $1 \le i \le L$  y el número de salidas  $N_s$ .
- 2. Se especifican las entradas y las salidas correspondientes:

$$\{(\underline{x}_k,\underline{d}_k); 1 \leq k \leq K\}$$

donde las  $\underline{x}_k = \begin{bmatrix} 1 & x_{1k} & x_{2k} ... & x_{Nk} \end{bmatrix}$  son las entradas a cada una de las neuronas en la capa 1 y las  $\underline{d}_k = \begin{bmatrix} d_{1k} & d_{2k} ... & x_{N_sk} \end{bmatrix}$  son las salidas deseadas para esas entradas para la k muestra de entrenamiento. K es el número total de muestras de entrenamiento.

#### Implementación del algoritmo para encontrar los pesos

- 3. Mientras no se haya convergido para obtener los pesos óptimos:
  - 3.1 Se inicia una nueva iteracción t = t + 1
- 3.2 Se colocan las entradas  $\underline{x}_k$  y se evalua la red comparando las salidas de ésta,  $\underline{z}_k^L$ , con las salidas deseadas  $\underline{d}_k$  para  $1 \le k \le K$ 
  - 3.3 Se actualizan los pesos de cada capa con:

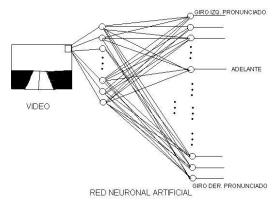
$$w_{ij}^{L}(t+1) = w_{ij}^{L}(t) + \eta \sum_{k=1}^{K} \delta_{jk}^{L} z_{ik}^{L-1} + \mu [w_{ij}^{L}(t) - w_{ij}^{L}(t-1)] + \epsilon_{ij}^{L}(t)$$

### Comportamientos de Robots Usando Redes Neuronales Artificiales

Ademas del algoritmo de Back Propagation existen otros metodos de optimización para encontrar los pesos óptimos, uno de ellos es usando algoritmos genéticos.

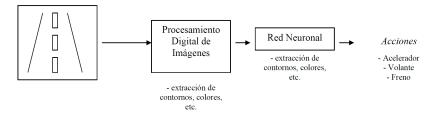
#### Comportamientos de Robots sin memoria

Se pueden usar las redes neuronales para tener comportamientos en los robots móviles. En Carnegie-Mellon University, se realizó un experimento en el cual un robot pudo manejar 90 % autónomamente en una autopista de Estados Unidos.



#### Comportamientos de Robots Usando Redes Neuronales Artificiales

La entrada a la red neuronal es una imagen de la cámara del robot. Se puede entregar la información en bruto o procesada usando técnicas de procesamiento digital de señales. Se entrena a la red para que siga los comportamientos que un conductor haría bajo ciertas circunstancias. La respuesta de la red es: para una cierta imagen, se giró a la izquierda violentamente; para otra imagen, se giró ligeramente; etcétera.



Estos comportamientos no tienen memoria.

#### Máquina de Estados Finitas

Una máquina de estados finita se define como:

 $M = (Q, X, Y, \delta, \lambda)$  donde:

Q: es un conjunto finito de estados.

X: es un conjunto finito de símbolos de entrada.

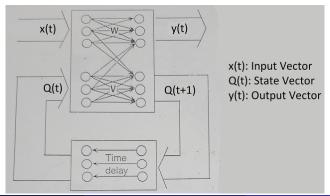
Y: es un conjunto finito de símbolos de salida.

 $\delta$ :  $QxX \rightarrow Q$ , es una función que genera el estado siguiente.

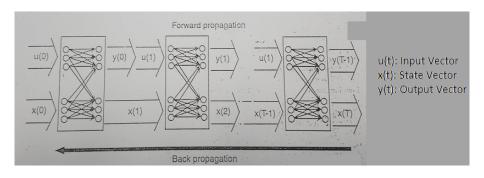
 $\lambda: Q \times X \to Y$ , es una función que genera las salidas.

#### Comportamientos de Robots Usando Redes Neuronales Artificiales

Para poder tener comportamientos usando redes neuronales similar a las máquinas de estado se necesita tener memoria y ésto se logra retroalimentando algunas de las salidas de la red como entradas. Así, se tiene una red neuronal artificial retroalimentada:



### Comportamientos de Robots Usando Redes Neuronales Artificiales

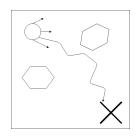


## Entrenamiento de Comportamientos usando el concepto de Máquina de Estados

Para un entrenamiento supervisado se tomarían las muestras de un operador moviendo el robot de un origen a un destino.

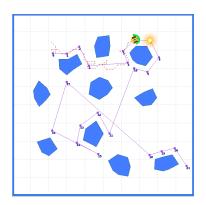
Si se usa un Joystick se guardan las acciones del operador como salidas deseadas de la red neuronal y se obtienen las lecturas de los sensores como entradas.

Muestras de entrenamiento  $\{X_k, d_k\}$   $x_k$ : Sensores  $d_k$ : Joystick: adelante, atrás, GI, GD, alto



# Entrenamiento de Comportamientos usando el concepto de Máquina de Estados

¿Cómo se indica el estado? Se podría usar como maestro a un robot que tenga una máquina de estados para evadir obstáculos y se guardan las entradas, estados y salidas.



#### Entrenamiento no Supervisado

Se indica la posición inicial y final del robot y se tiene que entrenar el algoritmo por si mismo. Si el algoritmo esta hecho con NN se utilizan algoritmos genéticos para encontrar los pesos  $w_{ij}^L$  para poder resolver el problema.