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Abstract—This research presents a novel way of represent-
ing human motion and recognizing human activities from the
skeleton output computed from RGB-D data from vision–based
motion capture systems. The method uses a representation ofthe
skeleton which is invariant to rotation and translation, based on
Orthogonal Direction Change Chain Codes, as observations for a
single Discrete Connected Hidden Markov Model formed by a set
of multiple Hidden Markov Models for simple activities, which
are merged using a grammar-based structure. The purpose of
this research is to provide a service robot with the capability of
human activity awareness, which can be used for action planning
with implicit and indirect Human–Robot Interaction.
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I. I NTRODUCTION

In daily life, human beings perform activities to accomplish
diverse tasks at different times throughout the day. These
activities are by one or several simpler activities which are
performed at different times, and these simple activities have
a chronological relationship to each other.

For human activity recognition, there are two techniques
for recognizing activities from movement: Template Matching
and State–Space [1]. In the Template Matching techniques,
the image sequence is converted in a static shape pattern
and is compared against a set of reference patterns; it is
computationally inexpensive, but it is more sensitive to the
variance of the movement duration. On the other hand, the
State–Space techniques define a model where each static
posture is a state and the states describing several poses are
connected by probabilities of transition, and any motion is
considered as a graph tour through various states of static
poses.

A. Space–State Human Activity Recognition

Space–State models have been used widely to predict,
estimate, and detect time series over a long period of time.
One representative model is the Hidden Markov Model [2],
which is a probabilistic technique to study discrete time series,
which is recently being used for recognizing human motion.
There are two approaches for recognizing human motion and
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activities using Hidden Markov Models, the first approach,
and the most used, is the Maximum Likelihood Probability,
where the likelihood probabilities of the elements of a set of
isolated Hidden Markov Models are computed from a sequence
of observations, and the motion or activity is selected fromthe
Model with the highest likelihood [2]. The other approach is
Viterbi Path Labelling, which is based on the computation of
the Viterbi Path on a single Hidden Markov Model where a
single state or a subset of linked states represent a motion or
activity, the sequence of states in the Viterbi path indicates
which motion or activity is being performed in a period of
time, according to a sequence of observations.

B. Human Activity Recognition Based on Maximum Likeli-
hood Probability

Several architectures and types of HMMs have been used
for activity recognition from Maximum Likelihood Probability,
such as Conditional HMMs, Ergodic HMMs, Linear HMMs,
and Maximum Entropy Markov Models.Conditional HMMs
have been used for human activity recognition and human–
object interaction using the skeleton computed from the depth
data and the image data of a Microsoft Kinect sensor [3].
Ergodic HMMs have been used for recognition of actions
which can be used for interaction with video games from a
Spherical Histogram for the joints of the skeleton computed
from the depth data of a Microsoft Kinect sensor [4].Linear
HMMs have been used for recognition of leg motion and hand
gestures from labeled body parts from depth data acquired
with a PrimeSense camera [5]; recognition of actions which
can be used for interaction with video games from a Bag of
3-D Points from the depth data of a Microsoft Kinect sensor
[6]; classification of golf swings from the skeleton computed
from the depth map of Microsoft Kinect sensor [7];Maximum
Entropy Markov Modelsdetection of human activity both in a
structured fashion, as well as in an unstructured fashion, using
geometrical and location information from Skeleton Joints, and
Histograms of Oriented Gradients from image and depth data
of a Microsoft Kinect sensor [8], [9].

C. Human Activity Recognition Based on Viterbi Path La-
belling

Activity recognition with Viterbi Path Labelling has been
applied with several architectures and types of HMMs, such
as Coupled HMMs, Ergodic HMMs, and Connected Linear



HMMs. Coupled HMMshave been used for health monitor-
ing from interactions of respiration and brain activity [10].
Ergodic HMMs have been used for recognition of actions
on video sequences from Residual Motion Vectors in images
sequences [11]; recognition of gestures of the upper body from
Pictorial Structures on segmented images [12]; detection of
fence climbing on surveillance video using the Star Skeleton
of a segmented image blob [13]; modelling of individual and
group interactions from the combination of multiple audio
and video sources [14].Connected Linear HMMshave been
used for transcription of motion from a set of Distributed
Body Sensors [15]; recognition of human activity from the
location of the hands and the head captured with a Stereo
Camera [16]; gait detection and discrimination between walk
and jogging activities by analysing the output of a set of
body–worn Inertial Motion Units [17]; recognition of human
behaviour from image and skeleton from depth data, captured
with a Microsoft Kinect sensor [18].

D. Data Sets

The acquisition of skeleton data from depth images is
the most recent approach for marker-less motion capture, it
is becoming widespread among the human activity research
community because depth sensors, as the Microsoft Kinect
sensor, have become more affordable and widely available. As
the skeleton captured by these depth sensors has a different
format than the most widely used motion capture databases,
such as CMU-MMAC [19], CMU Motion Capture Database
[20], HDM05 [21], KUG Data Base [22] and TUM Kitchen
Data Set [23]; the human activity research community has
been creating datasets based on depth sensor data (Table I),
using the work of James Shotton [24] on real time human
pose recognition, and depth sensors based on PrimeSense
technology, such as the Microsoft Kinect sensor.

II. PROPOSEDAPPROACH

In this research, the MSR Daily Activity 3D dataset is used
for training and testing the activity recognition system. In the
training stage, the code book of key frames is built from the
Orthogonal Direction Change Chain Codes of the clustered
skeletons of each activity, and the Discrete Connected Hidden
Markov Model is built from the Linear Hidden Markov Models
which have the largest likelihood probability for each activity.
In the testing stage, a sequence of observations symbols is
computed from a sequence of Orthogonal Direction Change
Chain Codes, using techniques of fuzzy string search on the
codebook of key frames; this sequence of observation symbols

Dataset Depth Color Skeleton
CAD-60 [8] • • •

G3D [25] • • •

Kinect+SR400 [26] • •

LIRIS [27] • •

MSR Action 3D [6] • • •

MSRDailyActivity3D [28] • • •

MSRC-12 [29] • • •

RGBD-HuDaAct [30] • • •

UCF Kinect [31] • •

TABLE I: Data Sets Based on PrimeSense technology Depth
Data

is used as input to the Discrete Connected Hidden Markov
Model to compute the most likely sequence of hidden states,
which indicates activities which are being performed during
the motion capture.

A. Orthogonal Direction Change Chain Code

The digitization stage is based on the Orthogonal Direction
Change Chain Code [32], which digitizes three-dimensional
curves into a set of codes which represent orthogonal direction
changes between three constant length segments of a three-
dimensional curve(~u,~v, ~w) (Equation 1), which are aligned
to the corners of a three-dimensional grid with constant-sized
cells.

As the orthogonal direction changes are relative, these
Chain Codes have some interesting properties: invariance to
translation, invariance to rotation, invariance to mirroring and
invariance to starting point. The invariance to rotation and
translation allow to represent a large set of curves generated by
absolute direction changes, such as orthogonal 3-D Freeman
codes, using only one Chain Code [33].

There are five different orthogonal direction changes for
representing any three-dimensional curve (Figure 1), as ex-
plained in the work of Bribiesca [32]:

• The Chain Element “0” represents a direction change
which goes straightthrough the contiguous straight-line
segments following the direction of the last segment.

• The Chain Element “1” represents a direction change to
the right.

• The Chain Element “2” represents a direction change
upward (stair-case fashion).

• The Chain Element “3” represents a direction change to
the left.

• The Chain Element “4” represents a direction change
which is going back.

chain element(~u,~v, ~w) =
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0, if ~w = ~v;

1, if ~w = ~u× ~v;

2, if ~w = ~u;

3, if ~w = −(~u× ~v);

4, if ~w = −~u
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Fig. 1: Orthogonal Direction Change Chain Elements

1) Digitization of a Three-Dimensional Curve:In order
to convert a set of three-dimensional lines into a set of line
segments of constant length, the first step consists in aligning
the vertices,~p ∈ R

3 and~q ∈ R
3, to the corners of the three-

dimensional grid, by rounding the values of~p and~q, according
to the smallest distance on each axis between the vertex and the
neighbour values on the grid,~gi and ~gj, obtaining the vertices
~p′ and ~q′ (Equation 2).



~gi = {floor (~vx) , floor (~vy) , floor (~vz)} (2a)
~gj = {ceil (~vx) , ceil (~vy) , ceil (~vz)} (2b)

~v′x =

{

~gix, if ~gix ≤ ~vx <
~gix+~gjx

2
< ~gjx;

~gjx, otherwise
(2c)

~v′y =

{

~giy, if ~giy ≤ ~vy <
~giy+~gjy

2
< ~gjy;

~gjy, otherwise
(2d)

~v′z =

{

~giz, if ~giz ≤ ~vz <
~giz+~gjz

2
< ~gjz ;

~gjz, otherwise
(2e)

When the distance between two vertices on the three-
dimensional grid is longer than the size of the cell, addi-
tional vertices on each axis are added to the line from the
components of the Manhattan distance of~p′ and ~q′, where
d(~p′, ~q′) =
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[34], to

compute a set of constant-length line segments between two
vertices.

Finally, the Chain Codes are computed by taking three
consecutive line segments, starting from the first line segment,
and applying the rules of orthogonal direction changes to
compute the corresponding chain element (Figure 2).
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Fig. 2: Example of Chain Code Sequence

B. Digitization of Three-dimensional joint data

The three-dimensional joint data is captured by a three-
dimensional vision system, such as the Microsoft Kinect,
which acquires the joint data by analysing the depth map
captured by the sensor. The skeleton data is digitized to Chain
Codes (Figure 3) for generating a set of key frames which
represent the motion of the arms.

There are a couple of factors which have significant impact
in the digitization of the skeleton data to Chain Codes: the
noise of the sensor and the angle of orientation of the body. The
former affects the length of each limb, resulting in Chain Codes
of variable length; while the latter affects the proportionof
orthogonal segments along a Chain Code, which has negative
effects in the algorithms which match Chain Codes.

1) Length of the Parts of the Body:The length of the body
parts of the skeleton which are captured by the Microsoft
Kinect sensor experiment variation in their measures either
by noise on the sensor of the camera, loose clothing on the
subject who is being recorded or limitations on the precision
of the algorithm which computes the location of each joint in
the skeleton, in order to keep a fast capture rate. When this
noisy data is converted to a set of Chain Codes, the length

(a) Depth Map
Skeleton

(b) Digitized Skeleton
(42mm Segments)

Fig. 3: Digitization of a Depth Map Skeleton

each element of the set varies according to the length of the
corresponding body part.

In order to correct those variations, from the original
skeleton is built a skeleton made of unitary vectors and is
scaled by a reference length which in this case is equal
to 170 mm, the length of the head and neck joints of the
skeleton which is captured by the Microsoft Kinect sensor and
processed by OpenNI.

2) Orientation of the Body:An issue with the matching of
Chain Codes from skeletons captured by three-dimensional vi-
sion sensors is the orientation angle of the torso of the subject:
the visual analysis of skeletons made of orthogonal direction
vectors shows that the same pose has varying proportions of
orthogonal direction vectors, according to the orientation angle
of the subject to the camera, which changes the apparent pose
of each limb [35].

In order to avoid that issue, the orientation of the skeletonis
normalized by applying two rotations to the skeleton, the first
rotation is computed using the normal vector~N of the triangle
formed by the joints of the torso~p1, the left shoulder~p2 and
the right shoulder~p3 which is aligned to the axis~Z of the
camera by computing the rotation matrixR which transforms
the normal vector~N into the vector~Z, using the Rodrigues
rotation formula (Equation 16) [36]. The whole skeletonS is
rotated by the matrixR to get a skeleton,SZ, which is aligned
to the the axis~Z of the camera (Equation 17).

Once the normal vector of the body has been aligned
towards the line of vision of the camera, the second rotationis
computed using the up vector of the body, which is computed
from the up vector~U = ~TL + ~TR, where ~TL = ~p1 + ~p2 and
~TR = ~p1 + ~p3, and ~p1, ~p2, ~p3 are the joints of the torso, the

left shoulder and the right shoulder; the up vector~U is aligned
to the vertical axis of the world~Y , by computing the rotation
matrixR which transforms the up vector~U into the vector~Y ,
using the Rodrigues rotation formula (Equation 30). The whole
skeletonSZ is rotated by the matrixR to get a skeleton,SZY,
which is aligned to the vertical axis of the world (Equation
31).This skeletonSZY is digitized to get a set of Chain Codes
which describe each limb and analyse motion using this data.



~j = (x, y, z) (3)
S = {j1, j2, j3 · · · j13, j14, j15} (4)
~p1 = Sj9 (5)
~p2 = Sj3 (6)
~p3 = Sj6 (7)
~TL = ~p2 − ~p1 (8)
~TR = ~p3 − ~p1 (9)
~TN = ~TL × ~TR (10)
~Z = (0, 0, 1) (11)

θ = cos−1
(

~TN · ~Z
)

(12)

~r =
~Z × ~TN

‖~Z × ~TN‖
(13)

I =

[

1 0 0
0 1 0
0 0 1

]

(14)

N(~r) =

[

0 −~rz ~ry
~rz 0 − ~rx

− ~ry ~rx 0

]

(15)

R = I+ sin θ ∗N(~r) + (1− cos θ) ∗N(~r)2 (16)
SZ = S ∗R (17)
SZ = (j1, j2, j3 · · · j13, j14, j15) (18)
~p1 = SZj9

(19)

~p2 = SZj3
(20)

~p3 = SZj6
(21)

~TL = ~p2 − ~p1 (22)
~TR = ~p3 − ~p1 (23)
~TU = ~TL + ~TR (24)
~Y = (0, 1, 0) (25)

θ = cos−1

(

~TU · ~Y
)

(26)

~r =
~Y × ~TU

‖~Y × ~TU‖
(27)

I =

[

1 0 0
0 1 0
0 0 1

]

(28)

N(~r) =

[

0 −~rz ~ry
~rz 0 − ~rx

− ~ry ~rx 0

]

(29)

R = I+ sin θ ∗N(~r) + (1− cos θ) ∗N(~r)2 (30)
SZY = SZ ∗R (31)

To eliminate the ambiguity which is posed by the proper-
ties of invariance of the Orthogonal Direction Change Chain
Codes, before the computation of the Chain Codes from the
set of constant length segments, three orthogonal segmentsare
appended at each end (Table II). These orthogonal segments
indicate the position of each limb at the ends (hands or feet),
relative to the joint at the middle of the joint sequence (neck
or hip).

Chain Codes x y z Chain Codes x y z

211 + − − 433 + + −

213 + − + 431 + + +

233 − − − 411 − + −

231 − − + 413 − + +

TABLE II: Relative Position Chain Codes

These Chain Codes work on the premise that the orthogonal
segments which are used to generate the digitized curve from
the Orthogonal Direction Change Chain Codes have the values
of {(0,−1, 0), (0, 0,−1)}, for the left end, and the values of
{(0, 1, 0), (0, 0, 1)} , for the right end.

A benefit of these additional Chain Codes is that if the
set of reference Chain Codes is organized in a prefix tree, the
lookup of Chain Codes is directed to the branches which have
the same prefix, resulting in a reduction of the lookup time.

C. Motion Analysis

The skeleton by itself is useful for analysing motion, since
each limb has 3 degrees of freedom, which accounts for a
large number of combinations of motions and angles which
can be used to extract relevant information about how a limb
is moving.

1) Splitting the skeleton:To make easier the analysis of
the motion and as the subjects of interest can be the arms or
legs, the skeleton is split into upper limbs and lower sections,
according to the Table III. The purpose of those joint sequences
is for computing a Chain Code which covers both sides of each
section in a consecutive manner.

Joint Sequence
Upper Section Left Hand, Left Elbow, Left Shoulder, Right Shoulder,

Right Elbow, Right Hand
Lower Section Left Foot, Left Knee, Left Hip, Right Hip, Right Knee,

Right Foot

TABLE III: Joints of upper and lower sections

2) Fast Levenshtein Distance:One way of measuring the
similarity between two strings of characters is by computing
the amount of single character edits which are required to
change a string into the other. This measure, also known as
editing distance, can be computed by the Levenshtein function
[37], which calculates the editing distance between two strings
by counting the minimum number of insertions, deletions and
substitutions between characters using dynamic programming
techniques. Similar strings have a short Levenshtein distance
between them, while the dissimilar strings have a long Leven-
shtein distance.

The Levenshtein function can be used to compute the
editing distance between strings of any length, however the
cost to compute it has orderO(mn), where m,n are the
lengths of the strings. And when the closest match of a string
is searched in a set of strings, this cost is multiplied by the
number of elementso in the set of strings, resulting in a total
computing cost ofO(mno).

One approach to reduce the computing cost of string is by
arranging the strings in prefix order, allowing the Levenshtein
distance table to be reused for similar strings as well as limiting



the growth of the distance table by appending or removing
rows at the bottom. A data structure which is very useful for
such purpose is thetrie or prefix tree[38], which is a n-ary
tree where the position on the tree defines the associated key,
all the descendent nodes share a prefix, and the leaves store
the values.

The search of a string on the trie starts by initializing a
global minimum cost, which is used as criteria to keep going
deeper on the trie. The next step consists in computing the
Levenshtein distance between the current character on the
string and all the nodes on the next depth level, the global
minimum cost is updated to the minimum Levenshtein distance
computed previously. The updated global minimum cost is
used as flag to keep searching on the internal nodes whose
minimum costs are lesser than the global minimum cost. The
search is repeated until there are no minimum Levenshtein
distances which are smaller than the global minimum cost [39],
[40].

D. Learning Model

The purpose of this work is to analyse human behaviour
by recognizing the activities which are performed by a person.
Human activity has the properties of being both complex and
dynamic, since a person can be performing any action, which
can be a pose or a motion, and suddenly change to another
action.

1) Hidden Markov Models:The learning model for activity
analysis is based on Hidden Markov Models, which are statis-
tical Markov Models in which the signal or process to model
is assumed to be a Markov Process with unobserved states
[2]. In this research, the hidden variable is an activity which is
being performed in a period of time, and the observed variable
is a symbol from the code book of key frames. The sequence
of key frame symbols of each limb (observations) is used as
input, either as a training sample or to figure out which activity
is performed from a set of observations. The Hidden Markov
Model for a simple activity is trained using Viterbi Learning
[41] on a set of sequences of observations of variable length,
which represent repetitions of the same activity. The purpose of
the training is to recognize different motions and poses which
can be performed with the arms.

2) Connected Hidden Markov Model:The learning model
proposed for this work is a large Hidden Markov Model which
is formed by connecting of several small Hidden Markov
Models [42], which can recognize a single activity (Figure 4),
to a common initial stateBm and a common final stateEm.
The common initial stateBm has equal emission probabilities
for each symbol and equal transition probabilities to any ofthe
initial states of the motion and pose recognition models, and
the common final stateEm has a transition which returns to
the common initial stateBm to restart the recognition process
(Figure 5). This configuration allows to detect transitions
between activities by returning to the common initial stateBm

after a change in the sequence of observations which has low
probability to be emitted in a certain set of states.

S1 S2 S3

Fig. 4: Hidden Markov Model for Single Activity Recognition
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S2
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S3
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...

S9

activity1

activity2

activityn

Fig. 5: Connected Hidden Markov Model for Continuous
Activity Recognition

The first step for building the Connected Hidden Markov
Model is to train every individual HMM for activity recogni-
tion with Viterbi Learning, using several combinations of states
and a training set of motion sequences, which are performed
by a group of persons. The Viterbi Learning algorithm is
selected for training the Hidden Markov Models because the
topology of each individual Hidden Markov Model is already
defined and the computing of the transition probabilities is
performed deterministically over the topology of the model,
which ensures that all the connected states are not isolated.

The selection of the best HMM starts by computing the
Likelihood Probability of a set of sequences of observations
of every activity in the testing set, using a set of HMMs which
recognize the same activity, and whose amount of states ranges
from 3 to 16 states. At the end of this testing stage, the HMMs
which have the Likelihood Probability for a target activityare
selected for building the Connected Hidden Markov Model.

Once all the best individual Hidden Markov Models are
selected, the construction of the Connected HMM starts by
removing the transitions to the statesB andE of each indi-
vidual activity recognition model, the next step is to connect
the common initial stateBm to the first state of each individual
Hidden Markov Model, and the last step is to connect the final
state of each individual motion/pose recognition model to the
common final stateEm.

The activity of a limb is labelled by computing the opti-
mal sequence of states ,~Q, using the Viterbi algorithm on a
sequence of observations,~O, which is obtained by classifying
the Chain Codes of digitized skeleton joints against the code
book of key frames. The sequence of states goes from the state
Bm, through all the states which belong to a certain activity,
and the stateEm to return to the beginning of the Connected
HMM, where depending on the changes on the sequence of
observations~O, the sequence of states~Q can go through the
states which described the former motion or can go through
the states of other activity.



III. T ESTS

The purpose of the tests is to prove that simple activities
can be recognized using three dimensional joint data, digitized
as Three-Dimensional Chain Codes, as input for a set of
Hidden Markov Models which recognize motion as a sequence
of discrete key frames.

A. Input Data

The tests were performed using the Microsoft Research
Daily Activity 3D Data set (MSRDaily) [28], which was
captured by using a Microsoft Kinect device. The data set is
composed by 16 activities,a) drink; b) eat;c) read book;d) call
cellphone;e) write on a paper;f) use laptop;g) use vacuum
cleaner;h) cheer up;i) remain still;j) toss paper;k) play game;
l) lay down on sofa;m) walk; n) play guitar;o) stand up; and
p) sit down which are performed by 10 persons, who execute
each activity twice, once in standing position, and once in
sitting position. There is a sofa in the scene. Three channels
are recorded: depth maps (.bin), skeleton joint positions (.txt),
and RGB video (.avi). There are16 ∗ 10 ∗ 2 = 320 files for
each channel. The whole set is formed by320 ∗ 3 = 960 files.
For the purpose of this work, only the skeleton joint positions
were used as input for the activity recognition system.

The training of the Hidden Markov Models for each activity
in theMSRDaily data set was done by selecting the activities
of the first 6 subjects, and a validation test was performed with
this training set; the last 4 subjects were used as input for tests
with unknown data. All the skeletons were normalized and
oriented to the axesY andZ, using the algorithms specified
at Section II-B2.

For this work, a discrete Hidden Markov Model is used
to recognize activities, therefore, a code book of symbols is
needed as input for the model. The symbols are generated
from a reference set of skeletons, which is computed by
applying Linde-Buzo-Gray Vector Quantization [43] to the set
of normalized skeletons. From this set of skeletons, a code
book is generated for the key frames of the motion of the
arms.

A control group of Hidden Markov Models for the ac-
tivities of the arms is computed with Viterbi Training, using
observations based on the average Euclidean distance between
the joints of each skeleton of the training set and the jointsof
a code book of skeletons.

The activity recognition using Chain Codes is performed
on skeletons which are digitized at a set of decreasing three-
dimensional grid resolutions (17mm, 42mm, 68mm). For each
resolution, the key frames are generated by digitizing the
reference set of skeletons. For each activity, a Hidden Markov
Model is computed with Viterbi Learning, using the with the
observations based on the similarity measures between the
Chain Codes of the training set and the Chain Codes of the
code book of key frames.

For both groups, each activity is trained on a set of Hidden
Markov Models with increasing amount of states, ranging from
3 to 16 states, which have the topology specified in the Section
II-D2.

The first test is the Single Model Test, whose purpose
is to find the amount of states where each Hidden Markov

Model has the highest likelihood probability, to select the
model which is more capable of recognizing an activity by
using the testing set as input. From the results of this test,
the Hidden Markov Models which have the highest likelihood
probability are used to build the Connected Hidden Markov
Models for Activity Labelling.

The second test is applied to the Connected Hidden Markov
to find out if it is able to label a set of testing data, which
is formed by a set of 10 routines, formed by activities of
the MSRDaily data set, that are performed by each person
of the testing set (Tables IV, V). The test is performed by
computing the Viterbi Path of each input routine, the path is
segmented using the lengths of each activity. Within each sub-
path, the states which are consecutive or related are counted,
and that count is divided by the length of the sub path to get
a percentage of the amount of observations which are labelled
correctly by a subset of the Hidden Markov Model, which
ranges from[0.0 · · ·1.0].

Test 1 Test 2 Test 3

activity example activity example activity example
remain still 2 remain still 2 remain still 2

walk 1 sit down 2 walk 2
remain still 2 eat 1 lay down on sofa 1

sit down 2 remain still 1 sit down 2
remain still 1 call cellphone 1

stand up 1
call cellphone 2

Test 4 Test 5

activity example activity example
remain still 2 remain still 2
toss paper 2 sit down 2
remain still 2 eat 2

cheer up 2 drink 2
walk 1 stand up 1

walk 1

TABLE IV: Set of Test Activities for Viterbi Path Labelling
Test (Standing Start)

Test 6 Test 7

activity example activity example
remain still 1 remain still 1

lay down on sofa 2 stand up 2
remain still 2 walk 2

stand up 1 sit down 1

Test 8 Test 9

activity example activity example
remain still 1 remain still 1

use vacuum cleaner 1 stand up 2
remain still 1 walk 2
use laptop 1 sit down 2
standup 2 remain still 1

walk 1
sit down 2

write 1

Test 10

activity example
remain still 1

stand up 2
walk 2

sit down 2
remain still 1

TABLE V: Set of Test Activities for Viterbi Path Labelling
Test (Sitting Start)

Regarding this test, two details must be pointed out. The



first detail is that the activities of theMSRDaily data set start
either from a standing position or a sitting position; and the
other detail is that the routines are built by concatenatingthe
motion data without any motion segmentation. Thus, for both
cases, the Viterbi Path can show states which are not related
to the activities indicated in the routine.

IV. RESULTS

The results on the Activity Labelling Tests show that
a Connected Hidden Markov Model which uses Orthogonal
Direction Change Chain Codes as observations, has a slightly
inferior accuracy at recognizing activities than a ControlCon-
nected Hidden Markov Model which uses Average Euclidean
Distance of Joints as observations (Tables VI, VII, VIII, IX).

Viterbi Path Labelling Accuracy(%)
Routine Test Subject 1 Test Subject 2 Test Subject 3 Test Subject 4

1 28.70% 1.30% 23.07% 42.59%
2 31.04% 12.65% 38.40% 50.10%
3 38.79% 24.79% 27.61% 23.93%
4 39.11% 3.30% 29.18% 32.86%
5 31.55% 8.83% 26.56% 33.78%
6 29.87% 10.30% 32.62% 35.02%
7 9.87% 13.95% 9.91% 30.71%
8 1.94% 6.98% 8.73% 25.14%
9 15.79% 13.30% 4.22% 65.86%
10 4.90% 7.67% 2.20% 52.18%

TABLE VI: Viterbi Path Labelling Accuracy (Arms, Normal-
ized Skeleton, Euclidean Distance Classifier, 256 Symbols)

Viterbi Path Labelling Accuracy(%)
Routine Test Subject 1 Test Subject 2 Test Subject 3 Test Subject 4

1 18.24% 4.36% 21.35% 20.22%
2 16.67% 9.31% 15.97% 10.18%
3 15.46% 18.70% 21.79% 19.26%
4 25.76% 14.34% 22.05% 20.23%
5 28.87% 12.58% 15.70% 22.76%
6 21.39% 8.66% 24.22% 4.63%
7 30.13% 11.82% 7.55% 27.66%
8 19.17% 8.65% 15.29% 21.17%
9 11.13% 6.76% 2.53% 5.15%
10 19.33% 11.50% 11.14% 16.89%

TABLE VII: Viterbi Path Labelling Accuracy (Arms, 17mm
ODC3, Levenshtein Distance Classifier, 256 Symbols)

Viterbi Path Labelling Accuracy(%)
Routine Test Subject 1 Test Subject 2 Test Subject 3 Test Subject 4

1 31.37% 2.24% 22.70% 14.81%
2 40.06% 3.34% 22.43% 16.17%
3 29.28% 25.96% 23.67% 13.25%
4 51.87% 19.54% 23.27% 27.98%
5 33.73% 22.37% 18.42% 22.88%
6 34.41% 3.58% 22.08% 7.24%
7 27.24% 8.72% 11.95% 17.98%
8 4.74% 6.32% 10.76% 10.98%
9 4.86% 1.39% 2.17% 12.94%
10 10.95% 11.50% 3.67% 9.67%

TABLE VIII: Viterbi Path Labelling Accuracy (Arms, 42mm
ODC3, Levenshtein Distance Classifier, 256 Symbols)

V. CONCLUSIONS

In this research, it was presented the first steps in the
development of a system for natural interaction with robots, by

Viterbi Path Labelling Accuracy(%)
Routine Test Subject 1 Test Subject 2 Test Subject 3 Test Subject 4

1 14.46% 6.24% 6.99% 22.22%
2 5.96% 9.31% 6.08% 9.58%
3 18.66% 28.21% 18.34% 16.44%
4 27.05% 15.36% 15.70% 14.78%
5 37.50% 23.10% 10.86% 19.73%
6 22.34% 5.67% 17.24% 6.51%
7 27.50% 13.18% 20.13% 21.44%
8 13.57% 9.23% 11.98% 18.21%
9 4.35% 5.79% 1.45% 6.19%
10 25.00% 14.83% 23.90% 18.94%

TABLE IX: Viterbi Path Labelling Accuracy (Arms, 68mm
ODC3, Levenshtein Distance Classifier, 256 Symbols)

recognizing human activities from data of three-dimensional
sensors, such as the Microsoft Kinect sensor, using Orthog-
onal Direction Change Chain Codes for digitization of three-
dimensional joint data, and Hidden Markov Models for activity
recognition. The Orthogonal Direction Change Chain Codes
provide a way of digitizing joint data which is invariant
to rotation, translation and mirroring, which simplifies the
matching against a set of key frames, which represent positions
in the motion range of a limb.

A Connected Hidden Markov Model to recognize activities
with repetitive motion was proposed for motion recognition.
The results of the tests showed that the Connected Hidden
Markov Model is capable of recognizing activities in standing
and sitting positions. The follow-up for this work is to integrate
spatial information to the motion analysis to enhance the
classification of motionless activities as well as performing
a thorough research on techniques of fuzzy string search, to
enhance the accuracy of the classification Chain Codes.
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[21] M. Müller, T. Röder, M. Clausen, B. Eberhardt, B. Krüger, and
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