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Abstract—This research presents a novel way of represent-
ing human motion and recognizing human activities from the
skeleton output computed from RGB-D data from vision—based
motion capture systems. The method uses a representation tife
skeleton which is invariant to rotation and translation, based on
Orthogonal Direction Change Chain Codes, as observation®f a
single Discrete Connected Hidden Markov Model formed by a ge
of multiple Hidden Markov Models for simple activities, which
are merged using a grammar-based structure. The purpose of
this research is to provide a service robot with the capabity of
human activity awareness, which can be used for action plaring
with implicit and indirect Human—Robot Interaction.

! Keywords—Hidden Markov Models, Activity Recognition,
Motion Recognition, Human—Machine Interaction, Pattern &og-
nition, Machine Learning, Viterbi Path

I. INTRODUCTION

activities using Hidden Markov Models, the first approach,
and the most used, is the Maximum Likelihood Probability,
where the likelihood probabilities of the elements of a det o
isolated Hidden Markov Models are computed from a sequence
of observations, and the motion or activity is selected fthm
Model with the highest likelihood [2]. The other approach is
Viterbi Path Labelling, which is based on the computation of
the Viterbi Path on a single Hidden Markov Model where a
single state or a subset of linked states represent a motion o
activity, the sequence of states in the Viterbi path indisat
which motion or activity is being performed in a period of
time, according to a sequence of observations.

B. Human Activity Recognition Based on Maximum Likeli-
hood Probability

Several architectures and types of HMMs have been used

In daily life, human beings perform activities to accomplis for activity recognition from Maximum Likelihood Probalty,
diverse tasks at different times throughout the day. Thesguch as Conditional HMMs, Ergodic HMMs, Linear HMMs,
activities are by one or several simpler activities whick ar and Maximum Entropy Markov Model€onditional HMMs

performed at different times, and these simple activitiageh
a chronological relationship to each other.

have been used for human activity recognition and human—
object interaction using the skeleton computed from thetdep
data and the image data of a Microsoft Kinect sensor [3].

For human activity recognition, there are two techniquesErgodiC HMMs have been used for recognition of actions

for recognizing activities from movement: Template Matahi

which can be used for interaction with video games from a

and State-Space [1]. In the Template Matching techniquesspherical Histogram for the joints of the skeleton computed
the image sequence is converted in a static shape patteffhm the depth data of a Microsoft Kinect sensor [dinear
and is compared against a set of reference patterns; it \§pMs have been used for recognition of leg motion and hand
computauonally inexpensive, but_ it is more sensitive te th gestures from labeled body parts from depth data acquired
variance of the movement duration. On the other hand, thGith a PrimeSense camera [5]; recognition of actions which
State—Space techniques define a model where each stafign he ysed for interaction with video games from a Bag of
posture is a state and the states describing several pases alp points from the depth data of a Microsoft Kinect sensor
conngcted by probabilities of transition, _and any motion iS[6]; classification of golf swings from the skeleton complite
considered as a graph tour through various states of statigom the depth map of Microsoft Kinect sensor [Klaximum
poses. Entropy Markov Modelsletection of human activity both in a
structured fashion, as well as in an unstructured fashisimgu
geometrical and location information from Skeleton Jgiatsl

_ : . Histograms of Oriented Gradients from image and depth data
Space—State models have been used widely to predlc'(t;!f a Microsoft Kinect sensor [8], [9].

estimate, and detect time series over a long period of time.
One representative model is the Hidden Markov Model [2],
which is a probabilistic technique to study discrete timeéesg C. Human Activity Recognition Based on Viterbi Path La-
which is recently being used for recognizing human motionbelling

There are two approaches for recognizing human motion and

A. Space-State Human Activity Recognition

Activity recognition with Viterbi Path Labelling has been

LACKNOWLEDGMENT: This work was supported by PAPIT-DGAPA applied with several architectures and types of HMMs, such
UNAM under Grant IN-107609 as Coupled HMMs, Ergodic HMMs, and Connected Linear




HMMs. Coupled HMMshave been used for health monitor- is used as input to the Discrete Connected Hidden Markov
ing from interactions of respiration and brain activity [10 Model to compute the most likely sequence of hidden states,
Ergodic HMMs have been used for recognition of actionswhich indicates activities which are being performed dgrin

on video sequences from Residual Motion Vectors in imagethe motion capture.

sequences [11]; recognition of gestures of the upper bay fr

Pictorial_ Structures on §egmentgd images [12]; detection op Orthogonal Direction Change Chain Code

fence climbing on surveillance video using the Star Skeleto

of a segmented image blob [13]; modelling of individual and  The digitization stage is based on the Orthogonal Direction
group interactions from the combination of multiple audio Change Chain Code [32], which digitizes three-dimensional
and video sources [14[connected Linear HMM&iave been curves into a set of codes which represent orthogonal ibrect
used for transcription of motion from a set of Distributed changes between three constant length segments of a three-
Body Sensors [15]; recognition of human activity from the dimensional curve, v, @) (Equation 1), which are aligned
location of the hands and the head captured with a Steret® the corners of a three-dimensional grid with constargdi
Camera [16]; gait detection and discrimination betweerkwal cells.

and jogging activities by analysing the output of a set of
body—worn Inertial Motion Units [17]; recognition of human
behaviour from image and skeleton from depth data, capture,
with a Microsoft Kinect sensor [18].

As the orthogonal direction changes are relative, these
hain Codes have some interesting properties: invariamce t
anslation, invariance to rotation, invariance to miimmgrand

invariance to starting point. The invariance to rotatiord an
translation allow to represent a large set of curves geeetat
D. Data Sets absolute direction changes, such as orthogonal 3-D Freeman

The acquisition of skeleton data from depth images iscodes, using only one Chain Code [33].

the most recent approach for marker-less motion capture, it There are five different orthogonal direction changes for

is becoming widespread among the human activity researcfypresenting any three-dimensional curve (Figure 1), as ex
community because depth sensors, as the Microsoft K'”e(ﬁlained in the work of Bribiesca [32]:

sensor, have become more affordable and widely availalde. A
the skeleton captured by these depth sensors has a differente The Chain Element “0” represents a direction change
format than the most widely used motion capture databases, which goes straightthrough the contiguous straight-line
such as CMU-MMAC [19], CMU Motion Capture Database segments following the direction of the last segment.
[20], HDMO5 [21], KUG Data Base [22] and TUM Kitchen e The Chain Element “1” represents a direction change to
Data Set [23]; the human activity research community has  theright.
been creating datasets based on depth sensor data (Table I)s The Chain Element “2” represents a direction change
using the work of James Shotton [24] on real time human upward (stair-case fashion).
pose recognition, and depth sensors based on PrimeSense The Chain Element “3” represents a direction change to
technology, such as the Microsoft Kinect sensor. the left.

e The Chain Element “4” represents a direction change

Il. PROPOSEDAPPROACH which is going back

In this research, the MSR Daily Activity 3D dataset is used
for training and testing the activity recognition system.the

training stage, the code book of key frames is built from the 0, ifw=71

Orthogonal Direction Change Chain Codes of the clustered L, ifd=uxu;
skeletons of each activity, and the Discrete Connectedétidd chain element (i, U, W) = ¢ 2, ifw = u; (1)
Markov Model is built from the Linear Hidden Markov Models 3, ifw=—(ix7);
which have the largest likelihood probability for each waityi A, if@ = —i

In the testing stage, a sequence of observations symbols is
computed from a sequence of Orthogonal Direction Change
Chain Codes, using techniques of fuzzy string search on the
codebook of key frames; this sequence of observation sysmbol

trfa4

Dataset Depth | Color | Skeleton
CAD-60 ] 3 . 3 . i N .
53 5] - - - Fig. 1: Orthogonal Direction Change Chain Elements
Kinect+SR400 [26] . .
LIRIS 27 . . o ] ]

MSR Action 3D [6 . . . 1) Digitization of a Three-Dimensional Curveln order
MSRDMfg'é’écfl"ng [2289 . . . to convert a set of three-dimensional lines into a set of line
RGBD-HUDaAG 07T e . . segments of constant length, the first step consists iniatign
UCF Kinect | e . the verticesp € R® and 7 € R3, to the corners of the three-

dimensional grid, by rounding the valuesjandg, according

TABLE I: Data Sets Based on PrimeSense technology Deptto the smallest distance on each axis between the verteshend t

Data

neighbour values on the grig; andg;, obtaining the vertices
p’ andq’ (Equation 2).



j\
g; = {floor (v,) , floor (4,) , floor (7)} (2a) #"“)
i = {ceil (Uy) , ceil (¥) , ceil (¥;)} (2b) L
- Cp oo - JiatGi, -
g, = Qi i Gl ST <FREE<gis o0
gj,» otherwise
- g oo - GiytG; .
oy = 4T UGy ST < T < Gi (o) \
9jy otherwise (a) Depth Map (b) Digitized Skeleton
oo Skeleton 42mm Segments
’U_» _{_;za if97z§5z<%<ggz; (28) ( g )
z — .
g, otherwise Fig. 3: Digitization of a Depth Map Skeleton

When the distance between two vertices on the three-
dimensional grid is longer than the size of the cell, addi-
tional vertices on each axis are added to the line from th@ach element of the set varies according to the length of the
components of the Manhattan distance pofand ¢’, where corresponding body part.
d(p',q') = ’p’z —q’m‘ + Py —dy| + . —q.| [34] to
compute a set of constant-length line segments between two In order to correct those variations, from the original
vertices. skeleton is built a skeleton made of unitary vectors and is

Finally, the Chain Codes are computed by taking three}'scaled by a reference length which in this case is equal

AT : 2 170 mm, the length of the head and neck joints of the
consecutive line segments, starting from the first line sagm 0 L ) .
and applying the rules of orthogonal direction changes t(;skeleton which is captured by the Microsoft Kinect sensat an

compute the corresponding chain element (Figure 2). processed by OpenNI.

2) Orientation of the BodyAn issue with the matching of

Chain Codes from skeletons captured by three-dimensianal v
sion sensors is the orientation angle of the torso of theestibj
g 3 the visual analysis of skeletons made of orthogonal divecti
’ :'2;Q £ vectors shows that the same pose has varying proportions of
2 23 233

orthogonal direction vectors, according to the orientatiagle

f th bject to th , which ch th t
Fig. 2: Example of Chain Code Sequence gf eaecﬁu"rjnetfp(%]' © camera, which changes the apparent pose

In order to avoid that issue, the orientation of the skeléton

B. Digitization of Three-dimensional joint data normalized by applying two rotations to thg skeleton, thst fir
. . . , rotation is computed using the normal veciorof the triangle
_ The three-dimensional joint data is captured by a threegqmeq py the joints of the torsg;, the left shouldeps and
dimensional vision system, such as the Microsoft KineCly o ight shoulders; which is aligned to the axi of the
which acquires the joint data by analysmg t.h?. depth MaRamera by computing the rotation matii which transforms

captured by the sensor. The skeleton data is digitized tcnnChathe normal vectorV into the vectorZ, using the Rodrigues

rceoegze(n'??rllje:em%)ti;%r oﬁl‘etﬂzrgtrlr%% a set of key frames Whld}otation formula (Equation 16) [36]. The whole skelet8nis
P ' rotated by the matriR. to get a skeletor§z, which is aligned

There are a couple of factors which have significant impacto the the axisZ of the camera (Equation 17).
in the digitization of the skeleton data to Chain Codes: the
noise of the sensor and the angle of orientation of the bdily. T once the normal vector of the body has been aligned
former affects the length of each limb, resulting in Chainl€®  owards the line of vision of the camera, the second rotation
of variable length; while the latter affects the proportioh _computed using the up vector of the body, which is computed
orthogonal segments along a Chain Code, which has negatiyg,m the up vectol/ = Ty, + Tk, whereTy, = p, + 5 and
effects in the algorithms which match Chain Codes. T = 51 + 7%, and pi, s, s are the joints of the torso, the

1) Length of the Parts of the BodiFhe length of the body left shoulder and the right shoulder; the up vedtois aligned
parts of the skeleton which are captured by the Microsofto the vertical axis of the world", by computing the rotation
Kinect sensor experiment variation in their measures eithematrix R which transforms the up vectaf into the vectory’,
by noise on the sensor of the camera, loose clothing on thesing the Rodrigues rotation formula (Equation 30). The i@ho
subject who is being recorded or limitations on the preaisio skeletonSz is rotated by the matriR to get a skeletor§zy,
of the algorithm which computes the location of each joint inwhich is aligned to the vertical axis of the world (Equation
the skeleton, in order to keep a fast capture rate. When thi31).This skeletor8zy is digitized to get a set of Chain Codes
noisy data is converted to a set of Chain Codes, the lengtivhich describe each limb and analyse motion using this data.



[ ChainCodes] « [ y | z [ ChainCodes] = [ v [ =z |
211 T -1 - 433 T r] -
j= (2,92 ) T T
S = {j1.J2, 73 J13: J1a, J1s} (4) 231 o = 413 o N
p1 = Sj (%) TABLE II: Relative Position Chain Codes
P2 =5j, (6)
P3 = Sjs (1)
=Py — P1 (8) These Chain Codes work on the premise that the orthogonal
Th = 73 — 7} 9) segments which are used to generate the digitized curve from
[ the Orthogonal Direction Change Chain Codes have the values
Ty =TL xTr (10)  of {(0,-1,0),(0,0,—1)}, for the left end, and the values of
7 =(0,0,1) @a1) {(0,1,0),(0,0,1)} , for the right end.
0 = cos—! (T?v ] Z) (12) A benefit of these additional Chain Codes is that if the
Y set of reference Chain Codes is organized in a prefix tree, the
. Z x Ty lookup of Chain Codes is directed to the branches which have
r= ||Z < T?vH (13)  the same prefix, resulting in a reduction of the lookup time.
I— F) (1) 8] (14) C. Motion Analysis
0 0 1 The skeleton by itself is useful for analysing motion, since
0 - 7 each limb has 3 degrees of freedom, which accounts for a
N() = | 72 0 —r (15) large number of combinations of motions and angles which
- T 0 can be used to extract relevant information about how a limb
R=1I+sin0+N(7) + (1 —cos) «N(?  (16) '°"oVNS:
S, =S*R (17) 1) Splitting the skeletonTo make easier the analysis of
Sz = (1, dads - j1s, 1, js) (18) the motion and as the subjects of interest can be the arms or
2 = N1, J2, 33700013, J14, 15 legs, the skeleton is split into upper limbs and lower sastio
p1 =Sz, (19) according to the Table IIl. The purpose of those joint segaen
ps =Sz, (20) is for computing a Chain Code which covers both sides of each
= Sy 1) section in a consecutive manner.
Je
5L Joint
Tf =b2—p (22) Upper Section Lce"frt1 Hai?i?eLg(f:teElbow, Left Shoulder, Right Shoulde,
= Right Elbow, Right Hand
Tr= pi p1 (23) Lower Section Léft Foot, I_v;ft Klnee, Left Hip, Right Hip, Right Knee
Ty =T, +Tr (24) Right Foot
Y =(0,1,0 25 TABLE 111 Joints of upper and lower sections
) L pp
6 =cos™! (T_EJ . }7) (26)
V< Tt 2) Fast Levenshtein Distancé®ne way of measuring the
F= U (27)  similarity between two strings of characters is by compmtin
1Y x Tyl the amount of single character edits which are required to
1 0 0 change a string into the other. This measure, also known as
I=10 1 0 (28)  editing distance, can be computed by the Levenshtein fumcti
0 0 1 [37], which calculates the editing distance between twiogs
by counting the minimum number of insertions, deletions and
0 - 7 substitutions between characters using dynamic progragmi
N = | 7 0 _ﬁ; (29) techniques. Similar strings have a short Levenshtein ntista
—r; T 0 between them, while the dissimilar strings have a long Leven
R=T+sinf+N()+(1—cosd)«N(? (30) Snein distance.
Syv =Sz + R (31) The Levenshtein function can be used to compute the

editing distance between strings of any length, however the

To eliminate the ambiauity which is posed by the pro er_cost to compute it has ordeP(mn), where m,n are the
Imi Iguity which 1S p y € ProbPer . gths of the strings. And when the closest match of a string

ties of invariance of the Orthogonal Direction Change Chai ; . . : .
. : s searched in a set of strings, this cost is multiplied by the
Codes, before the computation of the Chain Codes from thﬁumber of elements in the set of strings, resulting in a total

set of constant length segments, three orthogonal segments :

appended at each end (Table Il). These orthogonal segmenctgmpmIng cost 0O (mno).

indicate the position of each limb at the ends (hands or,feet) One approach to reduce the computing cost of string is by
relative to the joint at the middle of the joint sequence knec arranging the strings in prefix order, allowing the Levepsht

or hip). distance table to be reused for similar strings as well aisitign



the growth of the distance table by appending or removing (3 (3 (3
rows at the bottom. A data structure which is very useful for e-e-e
such purpose is therie or prefix tree[38], which is a n-ary

tree where the position on the tree defines the associated kg%, 4. Hidden Markov Model for Single Activity Recognition
all the descendent nodes share a prefix, and the leaves storéJ

the values.

The search of a string on the trie starts by initializing a A ““V‘
global minimum cost, which is used as criteria to keep going
deeper on the trie. The next step consists in computing the
Levenshtein distance between the current character on the
string and all the nodes on the next depth level, the global
minimum cost is updated to the minimum Levenshtein distance
computed previously. The updated global minimum cost is
used as flag to keep searching on the internal nodes whose
minimum costs are lesser than the global minimum cost. The
search is repeated until there are no minimum Levenshtein
distances which are smaller than the global minimum cogt [39
[40].

Fig. 5. Connected Hidden Markov Model for Continuous
Activity Recognition

D. Learning Model

The first step for building the Connected Hidden Markov
del is to train every individual HMM for activity recogni-
d‘ion with Viterbi Learning, using several combinations tites
nd a training set of motion sequences, which are performed
y a group of persons. The Viterbi Learning algorithm is
selected for training the Hidden Markov Models because the
topology of each individual Hidden Markov Model is already
: i . - defined and the computing of the transition probabilities is
1) Hidden Markov ModelsThe learning model for activity performed deterministically over the topology of the model

analysis is based on Hidden Markov Models, which are statisjhich ensures that all the connected states are not isolated
tical Markov Models in which the signal or process to model

is assumed to be a Markov Process with unobserved states The selection of the best HMM starts by computing the
[2]. In this research, the hidden variable is an activityebhis ~ Likelihood Probability of a set of sequences of observation
being performed in a period of time, and the observed vagiablof every activity in the testing set, using a set of HMMs which
is a symbol from the code book of key frames. The sequenctecognize the same activity, and whose amount of stategsang
of key frame symbols of each limb (observations) is used afrom 3 to 16 states. At the end of this testing stage, the HMMs
input, either as a training sample or to figure out which é@gtiv which have the Likelihood Probability for a target activiye

is performed from a set of observations. The Hidden Markowselected for building the Connected Hidden Markov Model.
Model for a simple activity is trained using Viterbi Leargin
[41] on a set of sequences of observations of variable lengt
which represent repetitions of the same activity. The psepuf
the training is to recognize different motions and posestvhi
can be performed with the arms.

The purpose of this work is to analyse human behaviou[\/]
by recognizing the activities which are performed by a perso 0
Human activity has the properties of being both complex an
dynamic, since a person can be performing any action, whic
can be a pose or a motion, and suddenly change to anoth
action.

Once all the best individual Hidden Markov Models are
r%elected, the construction of the Connected HMM starts by
removing the transitions to the staté&sand £ of each indi-
vidual activity recognition model, the next step is to cotine
the common initial statés,,, to the first state of each individual
Hidden Markov Model, and the last step is to connect the final

2) Connected Hidden Markov ModeThe learning model state of each individual motion/pose recognition model® t
proposed for this work is a large Hidden Markov Model which common final stateg,,,.

is formed by connecting of several small Hidden Markov o ) ) _ )
Models [42], which can recognize a single activity (Figuje 4  The activity of a limb is labelled by computing the opti-

to a common initial staté3,, and a common final stat&,,. ~ Mal sequence of state§), using the Viterbi algorithm on a
The common initial staté3,, has equal emission probabilities sequence of observation3, which is obtained by classifying

for each symbol and equal transition probabilities to anthef  the Chain Codes of digitized skeleton joints against theecod
initial states of the motion and pose recognition models, anbook of key frames. The sequence of states goes from the state
the common final staté,, has a transition which returns to B,,, through all the states which belong to a certain activity,
the common initial statd3,,, to restart the recognition process and the statev,, to return to the beginning of the Connected
(Figure 5). This configuration allows to detect transitionsHMM, where depending on the changes on the sequence of
between activities by returning to the common initial stBfg  observationg), the sequence of statés can go through the
after a change in the sequence of observations which has lostates which described the former motion or can go through
probability to be emitted in a certain set of states. the states of other activity.



I1l. TESTS Model has the highest likelihood probability, to select the

The purpose of the tests is to prove that simple activitiegnqdel which IS more capable of recognizing an activity by
can be recognized using three dimensional joint data,izégit usmg.the testing set as input. From the re;ults Of. th'.s test,
' ge Hidden Markov Models which have the highest likelihood

as Three-Dimensional Chain Codes, as input for a set o h . .
Hidden Markov Models which recognize motion as a sequenc robability are used to build the Connected Hidden Markov
odels for Activity Labelling.

of discrete key frames.
The second test is applied to the Connected Hidden Markov
A. Input Data to find out if it is able to label a set of testing data, which
is formed by a set of 10 routines, formed by activities of
the MSRDaily data set, that are performed by each person
Sof the testing set (Tables 1V, V). The test is performed by
computing the Viterbi Path of each input routine, the path is
segmented using the lengths of each activity. Within eabh su
: S . path, the states which are consecutive or related are abunte
cleaner) cheer upj) remain still,j) toss paperk) play game; and that count is divided by the length of the sub path to get

[) lay down on sofam) walk; n) play guitar;o) stand up; and ; .
: : percentage of the amount of observations which are labelle
p) sit down which are performed by 10 persons, who execuuggorrectly by a subset of the Hidden Markov Model, which

each activity twice, once in standing position, and once in anges from0.0 - - 1.0]
sitting position. There is a sofa in the scene. Three channel@"Y : e

The tests were performed using the Microsoft Researc
Daily Activity 3D Data set MSRDaily) [28], which was
captured by using a Microsoft Kinect device. The data set i
composed by 16 activitieg) drink; b) eat;c) read bookd) call
cellphone;e) write on a paperf) use laptop,g) use vacuum

are recorded: depth maps (.bin), skeleton joint positiai)( | TostT I Test 2 I o5t |

and RGB video (-a\”)- There _arHi *10 % 2 = 320 ﬂles_ for activity example activity example activity example

each channel. The whole set is formedd2p * 3 = 960 files. remain stil 2 remain stil 2 remain stll 2

For the purpose of this work, only the skeleton joint posisio walk : ; sit down i — walk : i

were used as input for the activity recognition system. Ll . T B
The training of the Hidden Markov Models for each activity | -emansul | 1 °a's'tg‘f1'('jpﬂgne 1

in the MSRDaily data set was done by selecting the activities call cellphone 2

of the first 6 subjects, and a validation test was performel wi | Test4 [ Test 5 [ |

this training set; the last 4 subjects were used as inputkist activity | example | _activity | example

with unknown data. All the skeletons were normalized ang rtemain still g feszin still g
H H H ' 0SS paper Sit aown

orlente(_j to the axe¥” and Z, using the algorithms specified == > ai 5

at Section 1I-B2. cheer up 2 drink 2

. . . . walk 1 stand up 1

For this work, a discrete Hidden Markov Model is used walk 1

to recognize activities, therefore, a code book of symbsls i - ] ] ]
needed as input for the model. The symbols are generate-Ef‘BLE IV: _Set of Test Activities for Viterbi Path Labelling
from a reference set of skeletons, which is computed byf€st (Standing Start)

applying Linde-Buzo-Gray Vector Quantization [43] to thet s

of normalized skeletons. From this set of skeletons, a code

book is generated for the key frames of the motion of the | Test6 | Test 7 |
arms. activity example activity example
remain still 1 remain still 1
A control group of Hidden Markov Models for the ac- lay down Of:A”SOfa g Sta”?kup g
tivities of the arms is computed with Viterbi Training, ugin tond up : o -
observations based on the average Euclidean distancedyetwe | Tost8 I Tost9 |
the joints of each skeleton of the training set and the joafits acivity example | activity | example
a code book of skeletons. remain stil T remain still 1
L . i i i use vacuum cleane 1 stand up 2
The activity recognition using Chain Codes is performed remain stll T walk 2
on skeletons which are digitized at a set of decreasing three use '%PIOP ; sit d_OWfT” i
dimensional grid resolutions (17mm, 42mm, 68mm). For each Sarcep : remain st
resolution, the key frames are generated by digitizing the Sit down 2
reference set of skeletons. For each activity, a Hidden Mark write 1
Model is computed with Viterbi Learning, using the with the Test 10 [
observations based on the similarity measures between the activity _ example
Chain Codes of the training set and the Chain Codes of the e jg" .
code book of key frames. walk 2
Lo . . it d 2
For both groups, each activity is trained on a set of Hidden rj,'naiﬁws?m T

Markov Models with increasing amount of states, rangingiro

3 to 16 states, which have the topology specified in the SectioTABLE_V_3 Set of Test Activities for Viterbi Path Labelling
[I-D2. Test (Sitting Start)

The first test is the Single Model Test, whose purpose
is to find the amount of states where each Hidden Markov Regarding this test, two details must be pointed out. The



first detail is that the activities of theI[SRDaily data set start

either from a standing position or a sitting position; and th

other detail is that the routines are built by concatenatireg

motion data without any motion segmentation. Thus, for both
cases, the Viterbi Path can show states which are not relats

to the activities indicated in the routine.

IV. RESULTS

The results on the Activity Labelling Tests show that

Viterbi Path Labelling Accuracy(%)
Routine | Test Subject 1| Test Subject 2| Test Subject 3| Test Subject 4
1 14.46% 6.24% 6.99% 22.22%
2 5.96% 9.31% 6.08% 9.58%
3 18.66% 28.21% 18.34% 16.44%
, 4 27.05% 15.36% 15.70% 14.78%
tU 5 37.50% 23.10% 10.86% 19.73%
6 22.34% 5.67% 17.24% 6.51%
7 27.50% 13.18% 20.13% 21.44%
8 13.57% 9.23% 11.98% 18.21%
9 4.35% 5.79% 1.45% 6.19%
10 25.00% 14.83% 23.90% 18.94%

a Connected Hidden Markov Model which uses OrthogonalABLE IX: Viterbi Path Labelling Accuracy (Arms, 68mm
Direction Change Chain Codes as observations, has a glightP?PC3, Levenshtein Distance Classifier, 256 Symbols)

inferior accuracy at recognizing activities than a Con@oh-

nected Hidden Markov Model which uses Average Euclidean

Distance of Joints as observations (Tables VI, VII, VIII)IX

Viterbi Path Labelling Accuracy(%)

Routine | Test Subject 1| Test Subject 2| Test Subject 3| Test Subject 4
1 28.70% 1.30% 23.07% 42.59%
2 31.04% 12.65% 38.40% 50.10%
3 38.79% 24.79% 27.61% 23.93%
4 39.11% 3.30% 29.18% 32.86%
5 31.55% 8.83% 26.56% 33.78%
6 29.87% 10.30% 32.62% 35.02%
7 9.87% 13.95% 9.91% 30.71%
8 1.94% 6.98% 8.73% 25.14%
9 15.79% 13.30% 4.22% 65.86%
10 4.90% 7.67% 2.20% 52.18%

TABLE VI: Viterbi Path Labelling Accuracy (Arms, Normal-

ized Skeleton, Euclidean Distance Classifier, 256 Symbols)

Viterbi Path Labelling Accuracy(%)

Routine | Test Subject 1| Test Subject 2| Test Subject 3| Test Subject 4
1 18.24% 4.36% 21.35% 20.22%
2 16.67% 9.31% 15.97% 10.18%
3 15.46% 18.70% 21.79% 19.26%
4 25.76% 14.34% 22.05% 20.23%
5 28.87% 12.58% 15.70% 22.76%
6 21.39% 8.66% 24.22% 4.63%
7 30.13% 11.82% 7.55% 27.66%
8 19.17% 8.65% 15.29% 21.17%
9 11.13% 6.76% 2.53% 5.15%
10 19.33% 11.50% 11.14% 16.89%

TABLE VII: Viterbi Path Labelling Accuracy (Arms, 17mm
ODCS3, Levenshtein Distance Classifier, 256 Symbols)

Viterbi Path Labelling Accuracy(%)

Routine | Test Subject 1| Test Subject 2| Test Subject 3| Test Subject 4
1 31.37% 2.24% 22.70% 14.81%
2 40.06% 3.34% 22.43% 16.17%
3 29.28% 25.96% 23.67% 13.25%
4 51.87% 19.54% 23.27% 27.98%
5 33.73% 22.37% 18.42% 22.88%
6 34.41% 3.58% 22.08% 7.24%
7 27.24% 8.72% 11.95% 17.98%
8 4.74% 6.32% 10.76% 10.98%
9 4.86% 1.39% 2.17% 12.94%
10 10.95% 11.50% 3.67% 9.67%

TABLE VIII: Viterbi Path Labelling Accuracy (Arms, 42mm
ODC3, Levenshtein Distance Classifier, 256 Symbols)

V. CONCLUSIONS

In this research, it was presented the first steps in thep,

development of a system for natural interaction with roploys

recognizing human activities from data of three-dimenaion
sensors, such as the Microsoft Kinect sensor, using Orthog-
onal Direction Change Chain Codes for digitization of three
dimensional joint data, and Hidden Markov Models for atyivi
recognition. The Orthogonal Direction Change Chain Codes
provide a way of digitizing joint data which is invariant
to rotation, translation and mirroring, which simplifieseth
matching against a set of key frames, which represent pasiti

in the motion range of a limb.

A Connected Hidden Markov Model to recognize activities
with repetitive motion was proposed for motion recognition
The results of the tests showed that the Connected Hidden
Markov Model is capable of recognizing activities in stargli
and sitting positions. The follow-up for this work is to igrate
spatial information to the motion analysis to enhance the
classification of motionless activities as well as perfargi
a thorough research on techniques of fuzzy string search, to
enhance the accuracy of the classification Chain Codes.
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