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Abstract. This paper presents a novel method for static gesture recogni-
tion based on three-dimensional chain codes which are computed from
three-dimensional skeletons acquired by three-dimensional vision sen-
sors, such as Microsoft KinectTM. The method has two stages: a digitiza-
tion stage and a recognition stage. The digitization stage is based on the
orthogonal direction change chain code, which represents the changes of
direction on segments of a three-dimensional curve which was fitted in a
three-dimensional grid; these changes of direction are invariant to rota-
tion and translation. The recognition stage is based in the detection of
dominant changes of direction on segments of a three-dimensional curve
which was fitted in a three-dimensional grid. The experiments for testing
this method of static gesture recognition involved recording the pose of
the arms of a subject who was standing at increasing distances and the
body was oriented in frontal and three-quarters angles; the poses were
matched against a set of reference arm poses which were taken from
a frontal body pose at an specific distance. The results show that the
generation and matching of three-dimensional chain codes of arm poses
captured on varying configurations are reliable enough for being used
for gesture recognition. The gesture recognition system will be used on
the robots of the Robocup@Home teams Markovito and Pumas from
Mexico.

Keywords. Feature extraction, Chain code, Machine vision, Three-
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Introduction

Human beings have several means of communicating ideas to their peers: speech,
which relies on emitting sounds with the vocal organs; writing, which relies on



drawing symbols on a surface; and gesturing, which relies on the presentation or

movement of body parts.

In daily life, people use gestures in order to give more information when a

person is speaking or for transmitting ideas when the situation does not allow to

speak, either because loud noises overwhelm speech loudness, silence is required

to perform a task, the interlocutors are too far from each other, or any of the

interlocutors is unable of speaking.

The interaction between a human being and a computer usually is done by de-

vices which must be manipulated directly, such as keyboards, mice, touch screens,

digitizing tablets, trackballs, joysticks, just to name a few. Another way of in-

teracting with a computer without relying on manipulable input devices is by

using voice commands, which are recorded by a microphone and the computer

interprets the sound information in order to get commands from it.

The advantage of using gestures is that they work in environments where

voice acquisition for verbal commands is complicated or infeasible, as well as

gestures provide a more universal way of inputting commands because voice input

is too dependent on both the accent and the pronunciation of the person who is

speaking.

The scope of this article is focused in presenting a novel way of representing

and recognizing human pose data from vision and motion capture systems.

The representation of human pose data depends on the source data which is

being used for tracking the human being. For the case of bi-dimensional image

data, the ways of acquiring human pose are: binary silhouettes obtained either

by background removal, color segmentation or depth segmentation [8,13,10,9,1];

invariant features extracted from image gradient [11], or three-dimensional joint

data acquired through motion capture [15,14,6,7] or by probabilistic recognition

of the position of the body parts using depth data [12]. According to the source

data and the scope of the work, the representation of the pose data has varied

formats, such as directed histograms of pixels [8], mathematical models for body

parts [13], edge oriented histograms [10], sets of images containing key poses

[9], residual vectors [1], SIFT-like features [11], differences of joint angles [15],

quaternions of each joint [14], statistical data from acceleration and angular data

[6], or vectors of angle features [7]. All these representations of pose data are used

as input for algorithms of temporal pattern recognition, such as Markov Models,

State Machines, Neural Networks, or Support Vector Machines.

The advantages of this method are the following: 1. the chain codes represent

three-dimensional orthogonal direction change, which makes the representation

of a three-dimensional curve invariant to translation and rotation; 2. the chain

codes can represent any three-dimensional curve in a compact fashion, as a string

of chain codes; 3. the computation of the chain codes and the computation of

the dominant direction changes use vector math and basic math, so they can be

optimized easily for computer architectures which lack of floating-point units.

This work was supported by PAPIIT-DGAPA UNAM under Grant IN117612.



1. Proposed Approach

The proposed method for static gesture recognition consists of two stages, a dig-
itization stage, where the three-dimensional joint data is converted to a discrete
three-dimensional curve, and a recognition stage, where the measure of similarity
between two discrete three-dimensional curves is computed in order to know if
two discrete three-dimensional curve have similar shapes.

1.1. Orthogonal Direction Change Chain Code

The digitization stage is based on the orthogonal direction change chain code
[2,5], which digitizes three-dimensional curves into a set of codes which represent
orthogonal direction changes between three constant length segments of a three-
dimensional curve (u, v, w) (Equation 2), which is aligned to the vertices of a
three-dimensional grid of a constant cell size.

In order to convert a set of three-dimensional lines into a set of constant
length segments, the first step consists in aligning the vertices of each line, p and
q, to the corners of the three-dimensional grid, by rounding the values of p′ and
q′, according to the smallest distance of each axis and two neighbouring vertices
of the grid (Equation 1), getting the vertices p′ and q′ as a result.

Most of the time, the length of the line is longer than the size of the cell
of the grid, additional points are added to the line by means of linear interpola-
tion, whose amount is the Chebyshev distance of p′ and q′, DChebyshev(p

′, q′) =
max (|p′ − q′|). The interpolated points are adjusted to the grid using the Equa-
tion 1.

v′x =

{

gx, if gx ≤ vx <
gx+gx+1

2
< gx+1;

gx+1, if gx <
gx+gx+1

2
≤ vx ≤ gx+1;

(1a)

v′y =

{

gy, if gy ≤ vy <
gy+gy+1

2
< gy+1;

gy+1, if gy <
gy+gy+1

2
≤ vy ≤ gy+1;

(1b)

v′z =

{

gz, if gz ≤ vz <
gz+gz+1

2
< gz+1;

gz+1, if gz <
gz+gz+1

2
≤ vz ≤ gz+1;

(1c)

Once all the points are adjusted to the grid, the next step is to split the
coordinates of the lines between two consecutive points to make a set of single line
segments. And, the final step is to assign chain codes by taking three consecutive
single line segments, starting from the first line segment, and apply the rules of
orthogonal direction changes to compute the corresponding chain element (Figure
1b).

There are five different orthogonal direction changes for representing any
three-dimensional curve (Figure 1) [4]:

• The Chain Element “0” represents a direction change which goes straight

through the contiguous straight-line segments following the direction of the
last segment.



• The Chain Element “1” represents a direction change to the right.

• The Chain Element “2” represents a direction change upward (stair-case

fashion).

• The Chain Element “3” represents a direction change to the left.

• The Chain Element “4” represents a direction change which is going back.

chain element(u, v, w) =































0, if w = v;

1, if w = u× v;

2, if w = u;

3, if w = −(u× v);

4, if w = −u

(2)

(a) Chain Elements, by number

(b) Example of Chain Code Sequence

Figure 1. Orthogonal Direction Change Chain Codes

1.2. Digitization of Three-dimensional joint data

The three-dimensional joint data is captured by a three-dimensional vision sys-

tem, such as the Microsoft KinectTM, which acquires the joint data by analysing

the depth map captured by the sensor. The joint data is organized in a humanoid

skeleton hierarchy.

For purposes of this work, the joints are numbered in this way (Figure 2):

0) Head (0); 1) Neck (1); 2) Left Shoulder (2); 3) Left Elbow (3); 4) Left

Hand (4); 5) Right Shoulder (5); 6) Right Elbow (6); 7) Right Hand (7); 8) Torso

(8) 9) Left Hip (9); 10) Left Knee (A); 11) Left Foot (B); 12) Right Hip (C);

13) Right Knee (D); 14) Right Hip (E).

The skeleton data is converted to a series of chain codes, which are merged

in a tree structure (Figure 3), using the notation described in [3].



1.3. Dominant Direction Changes

The first attempts of recognizing static gestures were based on the work of [4],
which describes an algorithm to compute the measure of dissimilarity between
two discrete three-dimensional curves (A and B), which are composed of a series
of orthogonal direction change chain codes, based on the quantification of the dif-
ferences between partial common couples contained in two curves. An implemen-
tation of the former algorithm was made in C++ and tested with sets of chain
codes, the results of the matching had large amounts of false positives, specially
between the poses for the arm being extended to the front and the arm being
lowered down, whose reference poses which had a matching rate close to 90%
between both poses.

Due to these problems, alternative approaches for analyzing the chain codes
to determine poses are researched. Through visual analysis of the chain codes,
it is pointed out that the chain codes of the three-dimensional curves for each
reference pose have different distributions of orthogonal segments. As an example,
the chain code for the left arm when is extended to the side has a large proportion
of orthogonal segments whose directions are parallel to the positive horizontal
axis +X , while the chain code for the right arm when is extended to the side
has a large proportion of orthogonal segments whose directions are parallel to the
negative horizontal axis −X (Table 1).

Direction Dominant Axis

Left +X

Right −X

Up +Y

Down −Y

Back +Z

Front −Z

Table 1. Dominant Axis for each Orthogonal Direction
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NOTE 1: Skeleton’s front side 
is seen in this figure.

NOTE 2: Upper arm is twisted
 such that if elbow is flexed
the lower arm will bend 
towards the sensor.
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Figure 2. Three-dimensional Joint Data Hierarchical Structure



(a) Raw
Depth
Data

(b) Raw
Skeleton

(c) Digitization of
17mm

(d) Digitization of
29mm

(e) Digitization of
42mm

(f) Digitization of
85mm

Figure 3. Skeleton Processing. Figures 3c–3f shows the trees of chain codes at different resolu-
tions, which are computed from raw skeleton data (Figure 3a, 3b).

In order to determine the Dominant Direction Vectors of a chain code, the
chain code needs to be converted to a set of orthogonal segments with a known
direction. In order to do that, two direction vectors are given arbitrarily, whose
only restriction is that they must be orthogonal to each other. For example,
u = (0, 1, 0) and v = (0, 0, 1). The next direction vector, w, is computed by
applying the rules for chain codes to each character of the chain code (Equation
2). Each direction vector, including the arbitrary direction vectors used at the
beginning, is stored in a list of vectors V . Every time that the direction vector
w is stored in the list of vectors, the direction vectors u and v have their values
reassigned to u = v and v = w.

Once all the direction vectors are stored in the list of vectors, the next step is
to compute the percentages of each direction, P , by dividing the count of the vec-
tors on each direction contained in the list of vectors, {V+X , V−X , V+Y , V−Y , V+Z , V−Z},
between the total amount of vectors in the list of vectors, |V | (Equation 3). The
Dominant Direction Vectors, D, are obtained from the two largest percentages
on P (Equation 4).

P =











































P+X = |V+X |
|V |

P−X = |V
−X |
|V |

P+Y = |V+Y |
|V |

P−Y = |V
−Y |
|V |

P+Z = |V+Z |
|V |

P−Z = |V
−Z |
|V |

(3)



Torso

Left KneeLeft Hip Left Foot

Right KneeRight Hip Right Foot

Left ElbowLeft Shoulder Left Hand

Neck Right ElbowRight Shoulder Right Hand

Figure 4. Skeleton Joint Tree structure used in this work.

D =

{

D1 = max(P )

D2 = max(P \D1)
(4)

2. Experiments

The purpose of the experiments is to test the reliability of computing the Domi-
nant Direction Vectors of three-dimensional chain codes for recognizing pose data
from body parts, specifically both arms, captured by three-dimensional vision
sensors and stored as video files.

2.1. Configuration

The vision sensor is set to a height of 1000mm above the ground, later the test
subject is set at a certain distance from the vision sensor and is asked to perform
a pose with the arm extended, in a determinate body orientation angle. The set of
distances are {2000mm, 2500mm}, the set of poses for each arm is lowered down,

extended to the front, and extended to the side; and the orientation angles set are
0◦, 45◦,−45◦, where 0◦ is the frontal angle camera of the subject and 45◦ is the
subject set on a three-quarters orientation. The height of the vision sensor does
not allow to capture poses where the arms are raised above the head.

The joints of the skeleton are used in relative coordinates, using the joint of the
torso as reference. The reference size for the resolution of the three-dimensional
grid for computing the three-dimensional chain codes is set to 170mm, because
is the length of the vector which is formed by the coordinates of both head
and neck joints. By using this reference size, other resolutions, which are frac-
tions of the reference size, are selected for the experiments, the resolution set is:
{17mm, 29mm, 42mm, 85mm}; the purpose of testing multiple resolutions for the
three-dimensional grid is to figure out at which resolutions the computation of the
Dominant Direction Vectors becomes unreliable while keeping close to real-time
performance. A subset of the joints of the skeleton is used to determine the pose
of each arm, without the forearm: torso, neck, shoulder and elbow.

The tree which describes the skeleton has the structure shown in Figure 4.
The tree is formed by four sequences of joints which have the torso centre as its
root. This configuration was chosen because the height of the vision sensor does
not allow acquiring the joint of the head when a person is at a close distance
(<= 1500mm).



2.2. Orientation Angle of the Body

An issue with the matching of chain codes from skeletons captured by three-
dimensional vision sensors is the orientation angle of the torso of the subject: the
visual analysis of skeletons made of orthogonal direction vectors shows that the
same pose has varying proportions of orthogonal direction vectors, according to
the orientation angle of the subject to the camera, which changes the apparent
pose of each limb. For example, when the subject is in front of the camera and has
both arms extended to the side, each arm has a large percentage of orthogonal
direction vectors on the X axis and a small percentage of orthogonal direction
vectors in the Z axis, which would match to a pose where a limb is extended to
the side; however, when the subject is in a three-quarters angle, the percentage
of orthogonal direction vectors on the X axis decreases and the percentage of
orthogonal direction vectors on the Z axis increases, which would match to a pose
where the limb is extended to the front or it would match to a pose where the
limb is extended to the back.

In order to avoid that, the orientation angle of the subject is computed from
the normal vector N of the triangle formed by the joints of the torso, the left
shoulder and the right shoulder, p1, p2, p3. From that vector, the orientation angle
θ is computed using Nx and Nz (Equation 8). The numerical value of the normal
vector of the torso, when the subject is in front of the camera, is 90◦, therefore,
when the subject is not oriented towards the camera, the complementary angle φ
must be computed to rotate each joint of the skeleton, whose coordinates are set
relative to the torso joint, in order to have the angle of the normal vector in the
numerical value of the frontal camera angle (Equation 9).

U = p3− p1 (5)

V = p2− p1 (6)

N = U × V (7)

θ = tan(
Nz

Nx

) (8)

φ = 90◦ − θ (9)

As the chain codes for each arm are start at the joint of the torso, a ref-
erence set of direction vectors can be added to reduce the ambiguity of the
chain codes, in this case the following sequence of direction vectors was used
{(0, 1, 0), (0, 0, 1), (0, 1, 0), (0, 0, 1)}, which is converted to the chain code sequence
22. With this sequence, the line between the torso joint and the neck joint can
be formed by a set of orthogonal direction vectors with the values (0, 1, 0) if the
resolution is high enough.

2.3. Arm Pose Matching

The matching process consists in computing the Dominant Direction Vector of the
chain code sequence for each arm, using the algorithm described in the Subsection



1.3. The algorithm was applied with a variation in the way the direction vectors
are counted: at high resolutions, the line between the torso joint and the neck
joint can be formed by a set of positive vertical orthogonal direction vectors with
the values (0, 1, 0), which can be used as a reference to find the origin of the
shoulders by finding any orthogonal direction vector whose value is different to
(0, 1, 0).

That sequence of consecutive positive vertical orthogonal direction vectors
can be ignored in order to limit the proportion of positive vertical orthogonal
direction vectors to those vectors which belong to poses where the arm is raised
above the level of the shoulders. Once an orthogonal direction vector which is
different to a positive vertical vector is found, at the level of each shoulder, the
count for computing the Dominant Direction Vectors is started.

For each pose there is a set of Dominant Direction Vector which are expected
(Table 2).

2.4. Results

In the testing stage, the subject is set in the distance and angle sets which are
mentioned in the section 2.1 and 200 skeleton samples of each arm pose are
captured, whose chain codes are computed later and matched against the reference
chain codes.

Both accuracy and running time are assessed for each configuration of the
arm pose tests. In the matching accuracy tests (Table 3–8), the overall best results
were achieved when the resolution became higher (Table 3, 8). As for the average
running time of the matching, this value increases with the resolution, the tests
performed with the highest resolution show an average time of 0.003 milliseconds,
which is good enough for real-time applications. These results can be compared
against a set of results from control data, which was obtained from the Dominant
Direction Vectors of raw join data captured by the Kinect (Tables 9 and 10).

A problem with the generation of chain codes for the skeleton is that either
by the noise on the depth map or by the lack of complete information in the
skeleton, it is not possible to generate a root node for the skeleton tree, which is
used as reference during the matching process. The lack of a root node reduces
the length of the chain code and increases the probability of a mismatch.

Another problem with the generation of the skeleton comes when the subject
has the arms extended towards the camera, as the visibility of the elbow is re-
duced, OpenNI is unable of computing the coordinates of the joint of the elbow
correctly, which alters the proportion of orthogonal direction vectors over the −Z

Pose First Dominant Vector Second Dominant Vector

Left Arm Side +X +Y or -Y

Right Arm Side -X +Y or -Y

Left Arm Down -Y +X

Right Arm Down -Y -X

Left Arm Front -Z +X

Right Arm Front -Z -X

Table 2. Expected Dominant Axis for each Arm Pose



axis, resulting in a set of Dominant Direction Vectors which does not identify the
pose for arms extended towards the camera (Tables 5 , 6).

Pose Arm
Accuracy (%) Average Running Time (ms)

17mm 29mm 42mm 85mm 17mm 29mm 42mm 85mm

Down (0◦)
Left 99.50 99.50 99.50 8.50 0.0032 0.0027 0.0031 0.0019

Right 99.50 99.50 99.50 21.00 0.0033 0.0027 0.0028 0.0020

Down (45◦)
Left 99.50 99.50 99.50 15.50 0.0033 0.0026 0.0026 0.0020

Right 99.00 79.50 99.50 2.00 0.002609 0.002178 0.002024 0.001532

Down (−45◦)
Left 96.50 96.50 95.50 96.50 0.002509 0.002055 0.002063 0.001504

Right 98.00 88.50 99.50 96.00 0.002763 0.002201 0.002094 0.001609

Table 3. Matching Accuracy of Down Pose (2000mm Away, Relative Coordinates)

Pose Arm
Accuracy (%) Average Running Time (ms)

17mm 29mm 42mm 85mm 17mm 29mm 42mm 85mm

Down (0◦)
Left 99.50 98.00 99.50 89.00 0.0032 0.0027 0.0024 0.0020

Right 99.50 99.50 99.50 98.50 0.0036 0.0029 0.0025 0.0020

Down (45◦)
Left 99.50 99.50 99.50 99.50 0.0041 0.0027 0.0025 0.0020

Right 95.00 94.50 94.50 86.00 0.002658 0.002189 0.001855 0.001675

Down (−45◦)
Left 99.50 99.50 99.50 99.50 0.002614 0.002142 0.001996 0.001539

Right 96.50 94.00 95.50 94.00 0.002938 0.002240 0.002022 0.001568

Table 4. Matching Accuracy of Down Pose (2500mm Away, Relative Coordinates)

Pose Arm
Accuracy (%) Average Running Time (ms)

17mm 29mm 42mm 85mm 17mm 29mm 42mm 85mm

Front (0◦)
Left 48.00 49.50 48.00 48.00 0.0034 0.0026 0.0025 0.0022

Right 10.00 9.00 2.00 0.00 0.0031 0.0025 0.0026 0.0020

Front (45◦)
Left 95.00 95.00 95.00 94.00 0.0032 0.0027 0.0025 0.0020

Right 93.00 94.00 91.00 95.00 0.002712 0.002112 0.001945 0.001611

Front (−45◦)
Left 94.00 94.00 94.00 94.00 0.002425 0.002004 0.002022 0.001568

Right 9.00 7.00 10.00 0.00 0.002591 0.002194 0.001996 0.001596

Table 5. Matching Accuracy of Front Pose (2000mm Away, Relative Coordinates)

Pose Arm
Accuracy (%) Average Running Time (ms)

17mm 29mm 42mm 85mm 17mm 29mm 42mm 85mm

Front (0◦)
Left 7.00 4.00 4.00 4.50 0.0036 0.0026 0.0024 0.0020

Right 59.00 58.00 54.50 37.00 0.0026 0.0021 0.0019 0.0018

Front (45◦)
Left 80.50 81.50 76.50 78.00 0.0033 0.0026 0.0024 0.0020

Right 95.50 96.00 95.50 56.00 0.002656 0.002068 0.001906 0.001539

Front (−45◦)
Left 74.00 74.00 74.00 74.00 0.002045 0.001673 0.001521 0.001311

Right 25.50 26.50 21.50 17.00 0.002951 0.002296 0.002073 0.001678

Table 6. Matching Accuracy of Front Pose (2500mm Away, Relative Coordinates)



Pose Arm
Accuracy (%) Average Running Time (ms)

17mm 29mm 42mm 85mm 17mm 29mm 42mm 85mm

Side (0◦)
Left 99.50 99.50 99.50 99.50 0.0033 0.0026 0.0025 0.0020

Right 99.50 99.50 99.50 99.50 0.0036 0.0030 0.0025 0.0021

Side (45◦)
Left 99.50 99.50 99.50 99.50 0.0034 0.0028 0.0025 0.0020

Right 99.50 99.50 99.50 99.50 0.002543 0.002012 0.001858 0.001557

Side (−45◦)
Left 99.50 99.50 99.50 99.50 0.002799 0.002337 0.002001 0.001578

Right 99.00 99.50 99.50 99.50 0.002779 0.002217 0.001947 0.001516

Table 7. Matching Accuracy of Side Pose (2000mm Away, Relative Coordinates)

Pose Arm
Accuracy (%) Average Running Time (ms)

17mm 29mm 42mm 85mm 17mm 29mm 42mm 85mm

Side (0◦)
Left 99.50 99.50 99.50 99.50 0.0035 0.0027 0.0026 0.0020

Right 99.00 99.00 99.00 99.00 0.0035 0.0028 0.0028 0.0021

Side (45◦)
Left 99.50 99.50 99.50 99.50 0.0034 0.0027 0.0024 0.0020

Right 99.50 99.50 99.50 99.50 0.002473 0.002009 0.001911 0.001529

Side (−45◦)
Left 99.00 99.00 99.00 99.00 0.002838 0.002281 0.002258 0.001645

Right 99.50 99.50 99.50 99.50 0.002658 0.002101 0.001876 0.001529

Table 8. Matching Accuracy of Side Pose (2500mm Away, Relative Coordinates)

Pose Arm
Accuracy (%) Average Running Time (ms)

0◦ 45◦ −45◦ 0◦ 45◦ −45◦

Down
Left 99.50 99.50 99.50 0.00682752 0.00801804 0.00938817

Right 99.50 99.50 99.50 0.00494681 0.00566779 0.00618352

Front
Left 95.00 94.00 94.50 0.00858765 0.00839521 0.00764601

Right 95.00 88.00 95.00 0.00609884 0.00608858 0.00538813

Side
Left 99.50 99.50 98.00 0.00745101 0.00843626 0.0073612

Right 98.50 98.50 98.50 0.00538813 0.00630154 0.00556003

Table 9. Stats of Control Group (2000mm Away, Relative Coordinates)

Pose Arm
Accuracy (%) Average Running Time (ms)

0◦ 45◦ −45◦ 0◦ 45◦ −45◦

Down
Left 99.50 99.50 99.50 0.00714568 0.00681213 0.00861843

Right 99.50 99.50 99.50 0.00526497 0.00509563 0.00664279

Front
Left 96.50 74.00 84.00 0.00859021 0.00659147 0.00799238

Right 96.50 73.00 83.50 0.00606036 0.00482879 0.00537273

Side
Left 98.50 99.00 99.50 0.00916751 0.00706357 0.00788206

Right 99.00 99.50 99.50 0.00611937 0.00560108 0.00540865

Table 10. Stats of Control Group (2500mm Away, Relative Coordinates)



3. Conclusions

The tests show that the matching of skeletons generated by three-dimensional
vision sensor, by means of a set of chain codes generated by high-resolution three-
dimensional resolution grid, using only the chain codes of arm poses when the
subject is in front of the camera can be used for gesture recognition. The matching
accuracy is reliable enough to use it as input for gesture recognition using proba-
bilistic signal analysis models, such as Hidden Markov Models; and the matching
running time is fast enough to use the chain code matching algorithm for real-
time applications. This gesture recognition system will be used on the robots of
the Mexican RobocupHome teams Markovito (INAOE) and Pumas (UNAM).
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