
1

Map Representation Using Hidden Markov Models For Mobile Robot Local-

ization

Jesus Savage, Oscar Fuentes, Luis Contreras and Marco Negrete

1Bio-Robotics Laboratory, Universidad Nacional Autónoma de México (UNAM)

Abstract. This paper describes a map representation and localization system for a mobile robot based on

Hidden Markov Models. These models are used not only to find a region where a mobile robot is, but also they

find the orientation that it has. It is shown that an estimation of the region where the robot is located can be

found using the Viterbi algorithm with quantized laser readings, i.e. symbol observations, of a Hidden Markov

Model.

Keywords: Hidden Markov Models, Robot localiza-

tion, Viterbi Algorithm.

1 Introduction

It is the general case that Robots are conceived to perform

a task, and the chosen world representation is highly cor-

related with the performance of the robot in such task [1].

The mapping process is restricted to the robot features,

where a map is generated using a collection of sensor read-

ings from a traversed trajectory in the scene given by the

robot shape and its degrees of freedom, and this informa-

tion might be useful to define the map [2] [3].

In the many years of research of robot navigation [4]

and SLAM [5] [6] [7], several map representations have

been proposed. From metric and topological to symbolic

and probabilistic representations [8] [9].

In this work, we propose a probabilistic representation

given by a Hidden Markov Model from a number of sen-

sor readings and robot displacements; this approach has

been proven useful for robot localization and navigation

[10], [11]. We extend those works by incorporating the

trajectory information in the Markov Model, allowing us

to obtain the position and orientation related to a number

of nodes on the trajectory.

The remaining of the paper is divided as follows: in

Section 2 we introduce the VIRBOT system while in Sec-

tion 3 we detail the cartographer module and develop the

map representation using Hidden Markov Models based

on the system characteristics. Then, in Section 4 we

present a localization method using the proposed map rep-

resentation. In Section 5 we detail the experiments and

results and in Section 6 we conclude this work.

1ACKNOWLEDGMENT: This work was supported by PAPIIT-

DGAPA UNAM under Grant IG-100818

2 The VIRBOT System

There are several architectures to control mobile robots, in

our approach, the VIRBOT system [12], the mobile robot’s

operation it is divided into four general layers: Inputs,

Planning, Knowledge Management and Execution, having

each of them several subsystems, see Figure 1. Each sub-

system has a specific function that contributes to the final

operation of the robot.

This system has similar features presented in the IN-

TERRAP agent architecture [13]

2.1 Inputs Layer

In this layer are the robot’s internal and external sensors,

as well as, the simulator that simulates these sensors when

a simulated Robot is used.

2.2 Planning Layer

Action Planner: The objective of action planning is to

find a sequence of physical operations to achieve the de-

sired goals.

Motion Planner: This module receives, from the ac-

tion planner, a set of locations that the robot needs to visit

and it finds paths to reach them using a topological map

and the A* Algorithm.

2.3 Knowledge Management Layer

Cartographer: This module creates and contains differ-

ent types of maps for the representation of the environ-

ment. This section is explained in more detail in section

3

Knowledge Representation: A rule-based system,

CLIPS, developed by NASA, is used to represent the

robot’s knowledge, in which each rule contains the en-

coded knowledge of an expert.

Figure 1. The VIRBOT System architecture consisting of sev-

eral subsystems that control the operation of a mobile robot.

2.4 Execution Layer

This module executes the actions and movements plans.

3 Cartographer

The cartographer module is responsible for estimating the

region where the robot is located. One of the problems of

using only dead reckoning to estimate the robots’ position

x, y, θ is that, due to errors in the movement of the robot

and errors in the sensors that measure them, after several

movements, the real position of the robot can not be esti-

mated accurately. In some robotics architectures, the ones

based only on reactive behaviors [14], it is not necessary

to know the exact pose of the robot but only an estimation

of the region where is located. There have been several ap-

proaches based on Hidden Markov Models and Bayesian

techniques to solve this problem [15]. In our system this

task is done by a localization module, using laser readings,

Hidden Markov Models and the Viterbi algorithm.

3.1 Hidden Markov Models

A Hidden Markov Model (HMM) is a two random variable

process, in which X one of the random variables is hidden,

and the other random variable O is observable [16]. The

hidden random variable X represents the states, in a model

that is a collection of states connected by transitions. In

our system, the states represent the centroids of the regions

in the free space where the robot navigates, see figure 2.

Each state has two sets of probabilities: an output

probability, that provides the conditional probability that

given that the system is in a particular state, a symbol is

generated from a finite set of symbols, and a transition

probability from going from one state to another.

Figure 2. Navigation Regions.

3.1.1 Generation of the HMM Symbols

The symbols are obtained using clustering techniques like

K Means or Vector Quantization (VQ). VQ techniques are

used for data compression, given a set of vectors, S j =

[s1, s2, ..., sm] that represent lasers readings, see figure 3, a

set of centroids are found which represent them.

Figure 3. Laser data S j = [s1, s2, ..., sm].

The collection of centroids is called a codebook. This

codebook is designed from a long training sequence that is

representative of all data, laser readings, to be encoded by

the system. To generate the codebook, the Lynde-Buzo-

Gray algorithm is used [17].

After the codebook is created, each vector S t of the

laser readings to be encoded is compared with each of the

stored vectors Ci, and the vector S t is coded by identifying

the vector Ck that best represents S t according to some

distance measurement d.

d(S t,Ck) = min(d(S t,Ci)), i = 1, ..., L (1)

where L is the size of the codebook. The distance mea-

surement used was the Euclidean distance.

3.1.2 HMM Model

The symbols are the indexes of a vector quantizer, for each

laser reading we have L possible observations vectors that

correspond to the L vectors of a quantizer. Then for a vec-

tor S t the symbol Ot corresponds to the index of the cen-

troid that best fits the laser readings, Ot = k.

And the probability of emitting symbol k being in state

i, bi(k) = p(Ot = k|Xt = i),where Xt = i means the Markov

chain was in state i at time t, and Ot = k means the output

symbol at time t was k.

The transition probability defines the probability of

taking the transition from a particular state to another state

or itself. Where ai j is the probability of taking a transition

from state i to state j:

ai j = p(Xt+1 = j|Xt = i).

Also included is the initial state distribution probabil-

ity:

πi = P[x1 = Xi], 1 < i < N

In the first order HMM, it is assumed that whether the

Markov model will be in a particular state X at time t + 1

only depends on the present state at time t, and not on the

past states.

P(Xt+1 = xt+1|xi, ..., xt)

= P(Xt+1 = xt+1|xt).

Another assumption is that if a symbol will be emitted

it only depends on the present state at time t, and not in the

past states or emitted observations.

P(ot = k|oi, ..., ot−1, xi, ..., xt)

= P(Ot = k|xt).

3.2 Discrete Hidden Markov Models for Laser

Readings

Each region R j of the environment where the robot nav-

igates is represented by a Markov model λ j = (A, B, π),

where the matrices A and B are: A = ai j and B = bi(k)

for all i, j and k, with N states and L observation symbols.

The probabilities of each Markov model λ j are found dur-

ing training. For each region j, 0 < j < Nregions, the robot

is set in region j with orientation of 0 degrees according to

an global origin and then it follows the steps described in

algorithm 1.

HMM states from 1 to 8, corresponds to the rota-

tion process and from 9 to 16 to the navigation one,

see figure 4. For each path that the robot takes in

a closed region, see figure 5, we get the observations

Algorithm 1: Training Behavior for region R j

Data:

Number of navigation steps NF

Training Vector Size TS

Result: Observations Vector ~O

n← 0

aux← 0

for n ≤ TS do
~On ← Quantized(laser readings)

if aux > NF then

The robot rotates 45◦

HMM state← possible states (1,2,...,8)

if aux > NF + 8 then
aux← 0

end

end

else

Robot in reactive navigation mode

HMM state← possible states (9,10,...,16)

end

aux← aux + 1

n← n + 1
end

Figure 4. HMM for each region

On(t1),On(t2), ...,On(ti), ...,O
n(tT), corresponding to the

vectors of quantization that best fit each of the laser read-

ings at ti, where n corresponds to the nth-repetition.

For each laser reading, we have L possible observa-

tions that correspond to the L vectors of a quantizer. This

quantizer was created using laser data during several paths

that the robot followed. With the set of observations an

estimation of the parameters of the HMM λ j, that is A, B

and π for each region j, was found using the BaumWelch

algorithm.

Figure 5. Training procedure for one region of the environment.

In the figure 6 we can see the complete HMM for the

environment in figure 2. This HMM represents the con-

catenation of each region in the environment, where each

node is the particular HMM λ j for each region.

Model 1

Model 2

Model 3

Model 4

Figure 6. HMM generated from the concatenation of each model

HMM of the regions shown in figure 2.

4 Robot Localization Using Discrete

Hidden Markov Models

To recognize the region where the robot is and its orienta-

tion, first, the robot start rotating every 45 degrees, until it

rotates 360 degrees, for each rotation it makes a laser read-

ing, generating a vector of laser readings that is encoded

through a vector quantizer of L vectors. This quantizer

gives a set of observations

O = O(t1),O(t2), ...,O(ti), ...,O(tT),

that correspond to the VQ vectors that best fit the laser

vector at time t during its rotation.

Then using the observation vector with all the HMM j

for each region, the probability of each model λ j is found

using the Forward algorithm [16], see figure 7. Then the

robot is in Region j:

Region j = argmax1<i<N[p(λi,O))], (2)

Figure 7. Probability evaluation for each region.

After it is found in which region is the robot as well its

orientation the robot starts navigating to a defined desti-

nation, collecting again another observation vector O, and

using this vector, the hidden variables, the states, are found

using the Viterbi algorithm. This algorithm finds the best

sequence of states in the network, and thus the best se-

quence of regions that the robot follows during its path.

Figure 8 shows the best path followed by the robot going

from one region to another.

Figure 8. Best path followed by the robot.

The Viterbi algorithm is as follows [16]:

Given a HHM model λ = (A, B, π) with N states

and L observation symbols, and an observation sequence

O = O1,O2, ...,OT . The following equation gives the high-

est probability to reach state i along a single path at time

t, given that the system has been in states x1...xt−1, xt and

with observations O1, ...,Ot:

δt(i) = maxP[x1...xt−1, xt = i,O1, ...,Ot|λ].

In order to retrieve the state sequence, it is necessary

for each t and j to keep track of the argument which max-

imize the previous equation. Using the array ψt(j), the

procedure is as follows:

2.1) Initialization:

δ1(i) = πibi(O1), 1 < i < N, (3)

ψt(i) = 0,

2.2) Recursion:

δt(i) = max1<i<N[δt−1(i)ai j]b j(Ot), (4)

2 < t < T, 1 < j < N,

ψt(j) = argmax1<i<N[δt−1(i)ai j], (5)

2 < t < T, 1 < j < N.

2.3) Termination:

P∗ = max1<i<N[δT (i)], (6)

x∗T = argmax1<i<N[δT (i)]. (7)

2.4) State sequence backtracking:

x∗t = ψt+1(q∗t+1), (8)

t = T − 1, T − 2, ..., 1.

Figure 9 shows the overall system to find the best se-

quence of regions that the robot visited.

Figure 9. Overall System.

5 Experiments and Results

We tested the algorithm using the VIRBOT simulation

module, in which laser readings can be simulated, see fig-

ure 3, as well as, with a TurtleBot robot, see figure 10. The

simulator simulates laser readings by finding the distance

of the objects in front of the robot, adding Gaussian noise

to the values. The virtual mobile robot and the real one

have a 180-degree laser, with a separation of 12 degrees

Figure 10. TurtleBot robot used in the experiments.

each, making 15 laser readings in each sensing. The real

robot uses a Hokuyo laser.

The algorithm was tested in an environment with 4 re-

gions, shown in figure 2. The robot was put in any of the

regions of each environment, and from this original posi-

tion, it tried to reach a set of destinations using reactive

behaviors. In figure 8, the robot starts in a particular re-

gion and to reach the goal destination, that is in another

region, it needs to pass through the nodes that link the re-

gions, when it reaches each of them it rotates to localize

it shelf. With the symbols that were found using the vec-

tor quantizer, the start orientation of the robot, as well as,

the best states were found on using the Viterbi algorithm.

Table 1 shows the results with the robot’s simulator, col-

umn Tr.S ize represents the number of vectors used to cre-

ate the laser VQ; column N.S ymbols indicates the number

L of centroids of the VQ, that is, the number of symbols

of the HMM; column N.Obs. indicates the number of ob-

servations T used in the Viterbi and Forward algorithms,

and finally the column Error shows the percentage of er-

ror for detecting in which region the robot is. As we can

see the best performance was obtained with a training set

of 8000 vectors, 512 observation symbols and using 64

observations each time the Forward and Viterbi algorithm

was performed. From the estimated states we found 89%

of the times the region where the simulated robot was, us-

ing only the laser readings without dead reckoning.

Tr.Size N. Symbols L N. Obs. T % Error

4000 32 36 56%

8000 32 36 32%

4000 256 36 35%

8000 256 36 16%

4000 512 36 31%

8000 512 36 13%

4000 32 64 45%

8000 32 64 26%

4000 256 64 30%

8000 256 64 15%

4000 512 64 17%

8000 512 64 11%

Table 1. System performance with the simulated robot.

Table 2 shows the results with the TurtleBot robot. As

we can see the best performance was obtained, as with the

simulator, with a training set of 8000 vectors, 512 observa-

tion symbols and using 64 observations each time the For-

ward and Viterbi algorithm was performed. From the esti-

mated states we found 85% of the times the region where

the real robot was, using only the laser readings without

dead reckoning.

Tr.Size N. Symbols L N. Obs. T % Error

4000 256 36 36%

4000 512 36 29%

8000 256 64 24%

8000 512 64 15%

Table 2. System performance with the real robot.

6 Conclusions

We proposed a method to estimate the region where a

robot is by using laser readings combined with Hidden

Markov Models and the Viterbi algorithm. Using only

laser reading without using dead reckoning, this technique

was able to find the region where the robot was located.

This approach worked well with our simulator, as well as,

with a real mobile robot. The next step is to increase the

number of regions, that is, to increase the accuracy of the

estimated position.

References

[1] L. Contreras, W. Mayol-Cuevas, O-POCO: Online

POint cloud COmpression mapping for visual odom-

etry and SLAM, in IEEE International Conference on

Robotics and Automation (????), p. 2017

[2] L.P. Berczi, T.D. Barfoot, It’s like deja vu all over

again: Learning place dependent terrain assessment

for visual teach and repeat, in IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems

(2016)

[3] M.W. M. Paton, K MacTavish, T.D. Barfoot, Bridg-

ing the appearance gap: Multi-experience local-

ization for long-term visual teach and repeat, in

IEEE/RSJ International Conference on Intelligent

Robots and Systems (2016)

[4] D. Scaramuzza, F. Fraundorfer, IEEE Robotics and

Automation Magazine 18(4) pp. 80–92 (2011)

[5] H. Durrant-Whyte, T. Bailey, IEEE Robotics and Au-

tomation Magazine 13(2) pp. 99–110 (2006)

[6] T. Bailey, H. Durrant-Whyte, IEEE Robotics and Au-

tomation Magazine 13(3) pp. 108–117 (2006)

[7] Thrun, J.J. Leonard, Simultaneous Localization and

Mapping (Springer Handbook of Robotics, 2008)

[8] I.F.A.P.A.B.M.N.M.M. J. Savage, L. Contreras,

C. Rivera, Construction of Roadmaps Maps for Mo-

bile Robots’ Navigation Using RGB-D Cameras,

in 13th International Conference on Intelligent Au-

tonomous Systems (2014)
[9] L. Contreras, W. Mayol-Cuevas, Towards CNN Map

Compression for camera relocalisation, in arXiv

(2017)

[10] S. Shahriar, A. Zelinsky, Mobile Robot Navigation

based on localisation using Hidden Markov Models

(1999)

[11] S. Shahriar, A. Zelinsky, Robot localization from

minimalist inertial data using a Hidden Markov

Model, in IEEE International Conference on Au-

tonomous Robot Systems and Competitions (2014)

[12] M.M. Jesus Savage, Marco Negrete, J. Cruz, The

Role of Robotics Competitions for the Development

of Service Robots, in IJCAI, Workshop on "Au-

tonomous Mobile Service Robots" (2016)

[13] J. Muller, The Design of Intelligent Agents: a layered

approach (Springer-Verlag, 1996)

[14] R. Arkin, R. Murphy, IEEE Transaction on Robotics

and Automation 6(4) pp. 445–452 (1990)

[15] S. Thrun, Technical Report, CMU-CS-96-122,

School of Computer Science, Carnegie Mellon Uni-

versity. (1996)

[16] L. Rabiner, Readings in Speech Recognition Morgan

Kaufmann Publishers pp. 267–296 (1990)

[17] A.B. Y. Linde, R.M. Gray, IEEE Transactions on

Communications, 84-95 (1980)

