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Quantum supremacy example - classical 
versus quantum factoring

• To factor a 2048 bit number to break the RSA 
cryptosystem

• Classical algorithm: 
– 10 year runtime, server farm covering ¼ of North America, 
– 106 terawatt (entire world’s supply of fossil fuels in one day), 
– Cost $106 trillion.

• Quantum algorithm on a superconducting quantum 
computer:

– 16 hours runtime,  1cm spacing for wires, 
– 10 megawatt, cost only $100 billion. 
– 100k logical qubits, 200M physical qubits, ~$10k/qubit

Example from: http://www.capri-school.eu/capri14/lectures/Martinis_Capri2014.pdf
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Impact of quantum technologies

3

computation secure communications 

sensing simulation

sensing image credit: https://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=10140



Fundamental principle 1: 
quantum superposition
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or

Classical Quantum

• Analogy: flip a coin, but do not catch it (“measure” it).
• Until the coin is in the air, it is in a superposition of `0’ 

and `1’ quantum states: a “qubit”: 

head = 1                     tail=0



Quantum superposition - Shrödinger’s cat
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Fundamental principle 2: 
quantum entanglement
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Correlated
left                right  

Anti-correlated
left                right  

• This represents a pair of entangled qubits, or an “ebit.” 



Classical and quantum computers - parallelism
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Classical Quantum
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Classical and quantum operations- logic gates
• Classical

• Quantum

– Unitarity: Quantum operations are time reversible
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Classical and quantum operations - read
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Classical Quantum

read

☂ ☏ ☠ …   ☢

read
☂ ☏ ☠ …   ☢

Measurement
observing the quantum 
state results in the 
collapse of the system



Classical and quantum operations - copy
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Classical Quantum

copy copy

No cloning
impossible to create an 
independent and identical copy 
of an arbitrary unknown 
quantum state



Qubits and quantum errors
• Qubits can take on the logical values zero and one 

simultaneously, and thus carry out calculations faster, 
but are extremely susceptible to perturbations caused by 
the noisy environment.
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Classical error correction:
linear block codes
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[1] S. Lin and D. J. Costello. Error control coding



Linear Block Codes
• binary linear block code    can be defined as 

the null space of its parity-check matrix of size 
such that any codeword                           .

• For a Hamming code, 

Codelength 𝑁, Dimension 𝐾,  Minimum distance 𝑑

• Syndrome: A received vector that is not a codeword 
results in a nonzero syndrome vector
–

𝐻 ൌ
1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1
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[1] S. Lin and D. J. Costello. Error control coding, volume 2. Prentice hall, 2001.



Linear block codes
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Low density parity check (LDPC) code
• A class of linear block codes with

parity check matrices having low
density of nonzero entries (i.e.,
sparse).

• Modern decoders – Belief 
Propagation

15

𝑑௩ ൌ 2
𝑑௖ ൌ 4

4 5 6 7

10

12

14 15

13

16

25



Quantum error correction (QEC)
• Fundamental challenges:

– Cannot copy a quantum state
– Cannot read from a quantum 

memory (uncertainty principle)
– Quantum gates are time-reversible
– Quantum gates are noisy

• How do we correct a quantum 
state without learning anything 
about it?! 

• How errors can be corrected 
when the gates that are used to 
correct them are also noisy?
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https://www.johnlund.com/page/8216/woman-juggling-riding-unicycle-on-
tightrope.asp

entangled qubits

stabilizer

Our approach:
quantum LDPC stabilizer codes



Why quantum LDPC codes?
• Promise fault tolerant computation

with constant overhead
• Decoded efficiently (in linear time) 

using low-complexity iterative 
decoding

• Involve stabilizer (parity) checks of 
bounded and low weight

• Finite (nonzero) asymptotic rate
• Minimum distance scaling better

than square root of the code length.
Better than surface codes.

• QLDPC decoding problem is still
open!
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Our current projects
• Quantum projects:

– NASA SURP Robust Neural Network Decoders for Quantum
Error Correction Systems

– NSF-CIF 1855879 Medium: Quantum Decoders
– NSF-CIF-2106189 Collaborative Research: CIF: Medium:

QODED: Quantum codes Optimized for the Dynamics between
Encoded Computation and Decoding using Classical Coding
Techniques

– NSF-ERC-1941583 Engineering Research Center for Quantum
Networks (CQN)

– Fermi National Accelerator Laboratory (sub-DOE) 
Superconducting Quantum Materials and Systems Center 

18
18



Our current projects
• Classical projects:  

– NSF CCF-2100013  Small: Learning To Correct Errors
– NSF CCSS-2027844 Neural Network Nonlinear Iterative LDPC 

Decoders with Guaranteed Error Performance and Fast 
Convergence

– NSF-CCSS-2052751 Collaborative Research: Secure and 
Efficient Post-quantum Cryptography: from Coding Theory to 
Hardware Architecture
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Outline

• Quantum state, measurement, Pauli channel

• Stabilizer codes

• Quantum LDPC codes and their decoders
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State of a quantum system
• Pure State       

– - a unit norm column vector (ket) in a complex vector space
– - a unit norm row vector (bra) : complex conjugate of        
– Unit norm:                   

–

• and        are orthogonal, 
• and       form the computational basis



Quantum bit, quantum state
• Unlike classical bit having ‘state’ either or , a qubit 

can be in a linear superposition of states.
• For –qubit state 

• Example, = 
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Pauli group and its properties
• Pauli group on a single qubit

– Pauli matrices and multiplicative factors േ1,േ𝑖, closed under 
matrix multiplication. 

– Pauli operators - the Hermitian elements of this group

Cayley diagram 
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Pauli group and its properties
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• Pauli matrices P are:
– Unitary                       eigenvalues have unit magnitude 𝑒௝ఏ

– Hermitian                      eigenvalues are real
–  only possible eigenvalues: േ1
– Pauli matrices either commute or anticommute, e.g.,
– And have self inverse, e.g.,  



Pauli matrix properties
• Action of Paulis on qubits:

– Example 
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bit-flip

phase-flip



• Pauli group on n qubits
– is an n-fold tensor product of        -on nqubits.

n-qubit Pauli group

- --
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Commuting operators

⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗

27



Simplectic product 
• Simplectic product
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Stabilizer formalism for quantum codes
• Stabilizer Group    : Subgroup of n-qubit Pauli group    

that leaves a non-trivial code state invariant.
–
–
–
–

• An [[n,k]] stabilizer code (in terms of stabilizers) 
– Vector space       stabilized by subgroup     of       such that 
– is the intersection of the subspaces fixed by each operator in
– has n-k independent and commuting generators  
– Codeword is a simultaneous eigenstate of all generators of    

with eigenvalue +1.  
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Quantum three-qubit repetition code
• Similar to classical repetition code.
• One quantum bit using the same three-bit repetition 

encoding.

• A general quantum state
is encoded as

• Code space is the space spanned by the codeword
basis states: ௅ and ௅.
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Stabilizers of the Quantum repetition code

• Observe that these four operators leave the basis states 
invariant:

• Stabilizer generators: 

• Consider set of  errors:
– All of these errors anti commute with either 𝑍𝑍𝐼 or 𝑍𝐼𝑍.
– Example: 
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Effect of errors on the code subspace
• What happens to our subspace basis elements, |000

and |111  under the (correctable) errors

• These errors map the subspace where the information is 
encoded into different orthogonal subspaces.



Centralizer and logical operators
• For 3 bit Quantum repetition code
• Centralizer is 

• The code is therefore defined by stabilizer generators 
plus the logical operators 

• Min distance: Minimum weight (minimum number of nontrivial 
(nonidentity) Paulis) of an encoded logical operator: In this case 1 (Z 
in ZZI). 33



Error correction
• Evolution of a closed quantum system is described by a 

unitary transformation 

• Error correction must be done without learning 
the state

• Pauli channel - error operators are Pauli matrices: 
{
– Depolarizing channel – Pauli errors are independent and happen 

with the same probability

error estimation

correctionchannel
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Syndrome measurement
• Nature prevents us from learning anything about the 

probability amplitudes  and  and 
• Nature only allows us to measure observables.

– Observable is a Hermitian operator 
– Measurement outcome is one of the eigenvalues of the operator 

(real number)
– Quantum state after measurement is eigenvector corresponding 

to that eigenvalue

• Examples of qubit observables: the Pauli operators X, Y, 
and Z.

• Measurement – projection to an eigenvector.
• Idea: choose measurements so that encoded state is an 

eigenvector corresponding to eigenvalue +1.
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Quantum syndrome decoding
• Let     be a non-zero error vector, resulting in a syndrome  

• As opposed to a classical syndrome decoder that tries to 
find    for a given observed syndrome, a valid output of a 
quantum decoder is any one of the vectors

• When                 , but

then the correction vector          is applied to flip bits in 
the (unobservable) quantum codeword is also a 
codeword, and a logical, undetectable, error occurs.

symplectic product
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Flaws of existing decoders of LDPC codes
• Why the existing decoders of QLDPC codes fail?
• Because of degenerate errors and because of trapping 

sets (they are related)
• To design better decoders we need to understand 

trapping sets in syndrome decoding
• Two types of trapping sets in QLDPC codes

– classical-like trapping sets
– trapping sets imbedded in symmetric stabilizers 
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Tanner graph of and syndrome matching
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Summary of our findings
• QLDPC codes have two classes of trapping sets:
• Classical-looking trapping set due to dense subgraphs

• Inherently-quantum trapping sets due to the symmetry of 
stabilizers

in [[900,36,10]] code

(10,0)

(4,2)                            (5,3)                                                (6,2)

in [[254,28]]  code, 
“A1” code of Panteleev and Kalatchev
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An example of a degenerate error
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An example of a degenerate error
• Error patterns and  induce a subgraph of a 

codeword.
• Iterative decoder attempts to converge to both and 

simultaneously leading to decoder failure.
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TS-aware code construction

symmetric HP codes constructed using random constituent codes
[20,5,8] and [24,6,10] from Roffe et al. 
HP code constructed using a trapping set aware QC[40,10,12] code from Roffe

Roffe et al. May 2020. arXiv:2005.07016 [quant-ph]

42



Better decoders
• A1 [[254,28]] code decoded by the min-sum algorithm 

(MSA) for two different schedules: 
– The layered schedule corrects all symmetric stabilizer TSs and 

numerous classical-type TSs.
– Large unexplored area with potentially big impact.
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Summary
• Iterative decoders on QLDPC codes fail due to presence 

of trapping sets - dense subgraphs of specific structure:
– classical looking (but quite different message dynamic)
– symmetric stabilizers

• We present the methodology to identify and enumerate 
trapping sets.

• Current work – using the knowledge of trapping sets we 
train a neural network to learn the decoder capable of 
correcting errors in trapping sets.
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Thank you!

N. Raveendran and B. Vasic, “Trapping Sets of Quantum LDPC 
Codes,” Quantum 5, 562, Oct. 2021. also at arXiv:2012.15297 [cs.IT]


